Acronym | squahex |
Name |
square-hexadecachoron duoprism, vertex figure of braxh |
Circumradius | 1 |
Volume | 1/6 = 0.166667 |
Face vector | 32, 128, 232, 216, 100, 20 |
Confer |
|
External links |
Incidence matrix according to Dynkin symbol
x4o x3o3o4o . . . . . . | 32 | 2 6 | 1 12 12 | 6 12 8 | 12 16 1 | 8 2 ------------+----+-------+----------+-----------+---------+----- x . . . . . | 2 | 32 * | 1 6 0 | 6 12 0 | 12 8 0 | 8 1 . . x . . . | 2 | * 96 | 0 2 4 | 1 8 4 | 4 8 1 | 4 2 ------------+----+-------+----------+-----------+---------+----- x4o . . . . | 4 | 4 0 | 8 * * ♦ 6 0 0 | 12 0 0 | 8 0 x . x . . . | 4 | 2 2 | * 96 * | 1 4 0 | 4 4 0 | 4 1 . . x3o . . | 3 | 0 3 | * * 128 | 0 2 2 | 1 4 1 | 2 2 ------------+----+-------+----------+-----------+---------+----- x4o x . . . ♦ 8 | 8 4 | 2 4 0 | 24 * * | 4 0 0 | 4 0 x . x3o . . ♦ 6 | 3 6 | 0 3 2 | * 128 * | 1 2 0 | 2 1 . . x3o3o . ♦ 4 | 0 6 | 0 0 4 | * * 64 | 0 2 1 | 1 2 ------------+----+-------+----------+-----------+---------+----- x4o x3o . . ♦ 12 | 12 12 | 3 12 4 | 3 4 0 | 32 * * | 2 0 x . x3o3o . ♦ 8 | 4 12 | 0 6 8 | 0 4 2 | * 64 * | 1 1 . . x3o3o4o ♦ 8 | 0 24 | 0 0 32 | 0 0 16 | * * 4 | 0 2 ------------+----+-------+----------+-----------+---------+----- x4o x3o3o . ♦ 16 | 16 24 | 4 24 16 | 6 16 4 | 4 4 0 | 16 * x . x3o3o4o ♦ 16 | 8 48 | 0 24 64 | 0 32 32 | 0 16 2 | * 4
x4o x3o3o *d3o . . . . . . | 32 | 2 6 | 1 12 12 | 6 12 4 4 | 12 8 8 1 | 4 4 2 ---------------+----+-------+----------+--------------+------------+------ x . . . . . | 2 | 32 * | 1 6 0 | 6 12 0 0 | 12 4 4 0 | 4 4 1 . . x . . . | 2 | * 96 | 0 2 4 | 1 8 2 2 | 4 4 4 1 | 2 2 2 ---------------+----+-------+----------+--------------+------------+------ x4o . . . . | 4 | 4 0 | 8 * * ♦ 6 0 0 0 | 12 0 0 0 | 4 4 0 x . x . . . | 4 | 2 2 | * 96 * | 1 4 0 0 | 4 2 2 0 | 2 2 1 . . x3o . . | 3 | 0 3 | * * 128 | 0 2 1 1 | 1 2 2 1 | 1 1 2 ---------------+----+-------+----------+--------------+------------+------ x4o x . . . ♦ 8 | 8 4 | 2 4 0 | 24 * * * | 4 0 0 0 | 2 2 0 x . x3o . . ♦ 6 | 3 6 | 0 3 2 | * 128 * * | 1 1 1 0 | 1 1 1 . . x3o3o . ♦ 4 | 0 6 | 0 0 4 | * * 32 * | 0 2 0 1 | 1 0 2 . . x3o . *d3o ♦ 4 | 0 6 | 0 0 4 | * * * 32 | 0 0 2 1 | 0 1 2 ---------------+----+-------+----------+--------------+------------+------ x4o x3o . . ♦ 12 | 12 12 | 3 12 4 | 3 4 0 0 | 32 * * * | 1 1 0 x . x3o3o . ♦ 8 | 4 12 | 0 6 8 | 0 4 2 0 | * 32 * * | 1 0 1 x . x3o . *d3o ♦ 8 | 4 12 | 0 6 8 | 0 4 0 2 | * * 32 * | 0 1 1 . . x3o3o *d3o ♦ 8 | 0 24 | 0 0 32 | 0 0 8 8 | * * * 4 | 0 0 2 ---------------+----+-------+----------+--------------+------------+------ x4o x3o3o . ♦ 16 | 16 24 | 4 24 16 | 6 16 4 0 | 4 4 0 0 | 8 * * x4o x3o . *d3o ♦ 16 | 16 24 | 4 24 16 | 6 16 0 4 | 4 0 4 0 | * 8 * x . x3o3o *d3o ♦ 16 | 8 48 | 0 24 64 | 0 32 16 16 | 0 8 8 2 | * * 4
x x x3o3o4o . . . . . . | 32 | 1 1 6 | 1 6 6 12 | 6 6 6 8 | 12 8 8 1 | 8 1 1 ------------+----+----------+-------------+-------------+------------+------- x . . . . . | 2 | 16 * * | 1 6 0 0 | 6 12 0 0 | 12 8 0 0 | 8 1 0 . x . . . . | 2 | * 16 * | 1 0 6 0 | 6 0 12 0 | 12 0 8 0 | 8 0 1 . . x . . . | 2 | * * 96 | 0 1 1 4 | 1 4 4 4 | 4 4 4 1 | 4 1 1 ------------+----+----------+-------------+-------------+------------+------- x x . . . . | 4 | 2 2 0 | 8 * * * ♦ 6 0 0 0 | 12 0 0 0 | 8 0 0 x . x . . . | 4 | 2 0 2 | * 48 * * | 1 4 0 0 | 4 4 0 0 | 4 1 0 . x x . . . | 4 | 0 2 2 | * * 48 * | 1 0 4 0 | 4 0 4 0 | 4 0 1 . . x3o . . | 3 | 0 0 3 | * * * 128 | 0 1 1 2 | 1 2 2 1 | 2 1 1 ------------+----+----------+-------------+-------------+------------+------- x x x . . . ♦ 8 | 4 4 4 | 2 2 2 0 | 24 * * * | 4 0 0 0 | 4 0 0 x . x3o . . ♦ 6 | 3 0 6 | 0 3 0 2 | * 64 * * | 1 2 0 0 | 2 1 0 . x x3o . . ♦ 6 | 0 3 6 | 0 0 3 2 | * * 64 * | 1 0 2 0 | 2 0 1 . . x3o3o . ♦ 4 | 0 0 6 | 0 0 0 4 | * * * 64 | 0 1 1 1 | 1 1 1 ------------+----+----------+-------------+-------------+------------+------- x x x3o . . ♦ 12 | 6 6 12 | 3 6 6 4 | 3 2 2 0 | 32 * * * | 2 0 0 x . x3o3o . ♦ 8 | 4 0 12 | 0 6 0 8 | 0 4 0 2 | * 32 * * | 1 1 0 . x x3o3o . ♦ 8 | 0 4 12 | 0 0 6 8 | 0 0 4 2 | * * 32 * | 1 0 1 . . x3o3o4o ♦ 8 | 0 0 24 | 0 0 0 32 | 0 0 0 16 | * * * 4 | 0 1 1 ------------+----+----------+-------------+-------------+------------+------- x x x3o3o . ♦ 16 | 8 8 24 | 4 12 12 16 | 6 8 8 4 | 4 2 2 0 | 16 * * x . x3o3o4o ♦ 16 | 8 0 48 | 0 24 0 64 | 0 32 0 32 | 0 16 0 2 | * 2 * . x x3o3o4o ♦ 16 | 0 8 48 | 0 0 24 64 | 0 0 32 32 | 0 0 16 2 | * * 2
x x x3o3o *d3o . . . . . . | 32 | 1 1 6 | 1 6 6 12 | 6 6 6 4 4 | 12 4 4 4 4 1 | 4 4 1 1 ---------------+----+----------+-------------+----------------+------------------+-------- x . . . . . | 2 | 16 * * | 1 6 0 0 | 6 12 0 0 0 | 12 4 4 0 0 0 | 4 4 1 0 . x . . . . | 2 | * 16 * | 1 0 6 0 | 6 0 12 0 0 | 12 0 0 4 4 0 | 4 4 0 1 . . x . . . | 2 | * * 96 | 0 1 1 4 | 1 4 4 2 2 | 4 2 2 2 2 1 | 2 2 1 1 ---------------+----+----------+-------------+----------------+------------------+-------- x x . . . . | 4 | 2 2 0 | 8 * * * ♦ 6 0 0 0 0 | 12 0 0 0 0 0 | 4 4 0 0 x . x . . . | 4 | 2 0 2 | * 48 * * | 1 4 0 0 0 | 4 2 2 0 0 0 | 2 2 1 0 . x x . . . | 4 | 0 2 2 | * * 48 * | 1 0 4 0 0 | 4 0 0 2 2 0 | 2 2 0 1 . . x3o . . | 3 | 0 0 3 | * * * 128 | 0 1 1 1 1 | 1 1 1 1 1 1 | 1 1 1 1 ---------------+----+----------+-------------+----------------+------------------+-------- x x x . . . ♦ 8 | 4 4 4 | 2 2 2 0 | 24 * * * * | 4 0 0 0 0 0 | 2 2 0 0 x . x3o . . ♦ 6 | 3 0 6 | 0 3 0 2 | * 64 * * * | 1 1 1 0 0 0 | 1 1 1 0 . x x3o . . ♦ 6 | 0 3 6 | 0 0 3 2 | * * 64 * * | 1 0 0 1 1 0 | 1 1 0 1 . . x3o3o . ♦ 4 | 0 0 6 | 0 0 0 4 | * * * 32 * | 0 1 0 1 0 1 | 1 0 1 1 . . x3o . *d3o ♦ 4 | 0 0 6 | 0 0 0 4 | * * * * 32 | 0 0 1 0 1 1 | 0 1 1 1 ---------------+----+----------+-------------+----------------+------------------+-------- x x x3o . . ♦ 12 | 6 6 12 | 3 6 6 4 | 3 2 2 0 0 | 32 * * * * * | 1 1 0 0 x . x3o3o . ♦ 8 | 4 0 12 | 0 6 0 8 | 0 4 0 2 0 | * 16 * * * * | 1 0 1 0 x . x3o . *d3o ♦ 8 | 4 0 12 | 0 6 0 8 | 0 4 0 0 2 | * * 16 * * * | 0 1 1 0 . x x3o3o . ♦ 8 | 0 4 12 | 0 0 6 8 | 0 0 4 2 0 | * * * 16 * * | 1 0 0 1 . x x3o . *d3o ♦ 8 | 0 4 12 | 0 0 6 8 | 0 0 4 0 2 | * * * * 16 * | 0 1 0 1 . . x3o3o *d3o ♦ 8 | 0 0 24 | 0 0 0 32 | 0 0 0 8 8 | * * * * * 4 | 0 0 1 1 ---------------+----+----------+-------------+----------------+------------------+-------- x x x3o3o . ♦ 16 | 8 8 24 | 4 12 12 16 | 6 8 8 4 0 | 4 2 0 2 0 0 | 8 * * * x x x3o . *d3o ♦ 16 | 8 8 24 | 4 12 12 16 | 6 8 8 0 4 | 4 0 2 0 2 0 | * 8 * * x . x3o3o *d3o ♦ 16 | 8 0 48 | 0 24 0 64 | 0 32 0 16 16 | 0 8 8 0 0 2 | * * 2 * . x x3o3o *d3o ♦ 16 | 0 8 48 | 0 0 24 64 | 0 0 32 16 16 | 0 0 0 8 8 2 | * * * 2
xx xx3oo3oo4oo&#x → height = 1 (hexip || hexip) o. o.3o.3o.4o. & | 32 | 1 6 1 | 6 12 1 6 | 12 8 6 12 | 8 1 12 8 | 1 8 1 --------------------+----+----------+-------------+-------------+------------+------- x. .. .. .. .. & | 2 | 16 * * | 6 0 1 0 | 12 0 6 0 | 8 0 12 0 | 1 8 0 .. x. .. .. .. & | 2 | * 96 * | 1 4 0 1 | 4 4 1 4 | 4 1 4 4 | 1 4 1 oo oo3oo3oo4oo&#x | 2 | * * 16 | 0 0 1 6 | 0 0 6 12 | 0 0 12 8 | 0 8 1 --------------------+----+----------+-------------+-------------+------------+------- x. x. .. .. .. & | 4 | 2 2 0 | 48 * * * | 4 0 1 0 | 4 0 4 0 | 1 4 0 .. x.3o. .. .. & | 3 | 0 3 0 | * 128 * * | 1 2 0 1 | 2 1 1 2 | 1 2 1 xx .. .. .. ..&#x | 4 | 2 0 2 | * * 8 * ♦ 0 0 6 0 | 0 0 12 0 | 0 8 0 .. xx .. .. ..&#x | 4 | 0 2 2 | * * * 48 | 0 0 1 4 | 0 0 4 4 | 0 4 1 --------------------+----+----------+-------------+-------------+------------+------- x. x.3o. .. .. & ♦ 6 | 3 6 0 | 3 2 0 0 | 64 * * * | 2 0 1 0 | 1 2 0 .. x.3o.3o. .. & ♦ 4 | 0 6 0 | 0 4 0 0 | * 64 * * | 1 1 0 1 | 1 1 1 xx xx .. .. ..&#x ♦ 8 | 4 4 4 | 2 0 2 2 | * * 24 * | 0 0 4 0 | 0 4 0 .. xx3oo .. ..&#x ♦ 6 | 0 6 3 | 0 2 0 3 | * * * 64 | 0 0 1 2 | 0 2 1 --------------------+----+----------+-------------+-------------+------------+------- x. x.3o.3o. .. & ♦ 8 | 4 12 0 | 6 8 0 0 | 4 2 0 0 | 32 * * * | 1 1 0 .. x.3o.3o.4o. & ♦ 8 | 0 24 0 | 0 32 0 0 | 0 16 0 0 | * 4 * * | 1 0 1 xx xx3oo .. ..&#x ♦ 12 | 6 12 6 | 6 4 3 6 | 2 0 3 2 | * * 32 * | 0 2 0 .. xx3oo3oo ..&#x ♦ 8 | 0 12 4 | 0 8 0 6 | 0 2 0 4 | * * * 32 | 0 1 1 --------------------+----+----------+-------------+-------------+------------+------- x. x.3o.3o.4o. & ♦ 16 | 8 48 0 | 24 64 0 0 | 32 32 0 0 | 16 2 0 0 | 2 * * xx xx3oo3oo ..&#x ♦ 16 | 8 24 8 | 12 16 4 12 | 8 4 6 8 | 2 0 4 2 | * 16 * .. xx3oo3oo4oo&#x ♦ 16 | 0 48 8 | 0 64 0 24 | 0 32 0 32 | 0 2 0 16 | * * 2
© 2004-2024 | top of page |