Acronym squahex Name square-hexadecachoron duoprism,vertex figure of braxh Circumradius 1 Volume 1/6 = 0.166667 Confer more general: n,hex-dip   general polytopal classes: segmentopeta

Incidence matrix according to Dynkin symbol

```x4o x3o3o4o

. . . . . . | 32 |  2  6 | 1 12  12 |  6  12  8 | 12 16 1 |  8 2
------------+----+-------+----------+-----------+---------+-----
x . . . . . |  2 | 32  * | 1  6   0 |  6  12  0 | 12  8 0 |  8 1
. . x . . . |  2 |  * 96 | 0  2   4 |  1   8  4 |  4  8 1 |  4 2
------------+----+-------+----------+-----------+---------+-----
x4o . . . . |  4 |  4  0 | 8  *   * ♦  6   0  0 | 12  0 0 |  8 0
x . x . . . |  4 |  2  2 | * 96   * |  1   4  0 |  4  4 0 |  4 1
. . x3o . . |  3 |  0  3 | *  * 128 |  0   2  2 |  1  4 1 |  2 2
------------+----+-------+----------+-----------+---------+-----
x4o x . . . ♦  8 |  8  4 | 2  4   0 | 24   *  * |  4  0 0 |  4 0
x . x3o . . ♦  6 |  3  6 | 0  3   2 |  * 128  * |  1  2 0 |  2 1
. . x3o3o . ♦  4 |  0  6 | 0  0   4 |  *   * 64 |  0  2 1 |  1 2
------------+----+-------+----------+-----------+---------+-----
x4o x3o . . ♦ 12 | 12 12 | 3 12   4 |  3   4  0 | 32  * * |  2 0
x . x3o3o . ♦  8 |  4 12 | 0  6   8 |  0   4  2 |  * 64 * |  1 1
. . x3o3o4o ♦  8 |  0 24 | 0  0  32 |  0   0 16 |  *  * 4 |  0 2
------------+----+-------+----------+-----------+---------+-----
x4o x3o3o . ♦ 16 | 16 24 | 4 24  16 |  6  16  4 |  4  4 0 | 16 *
x . x3o3o4o ♦ 16 |  8 48 | 0 24  64 |  0  32 32 |  0 16 2 |  * 4
```

```x4o x3o3o *d3o

. . . . .    . | 32 |  2  6 | 1 12  12 |  6  12  4  4 | 12  8  8 1 | 4 4 2
---------------+----+-------+----------+--------------+------------+------
x . . . .    . |  2 | 32  * | 1  6   0 |  6  12  0  0 | 12  4  4 0 | 4 4 1
. . x . .    . |  2 |  * 96 | 0  2   4 |  1   8  2  2 |  4  4  4 1 | 2 2 2
---------------+----+-------+----------+--------------+------------+------
x4o . . .    . |  4 |  4  0 | 8  *   * ♦  6   0  0  0 | 12  0  0 0 | 4 4 0
x . x . .    . |  4 |  2  2 | * 96   * |  1   4  0  0 |  4  2  2 0 | 2 2 1
. . x3o .    . |  3 |  0  3 | *  * 128 |  0   2  1  1 |  1  2  2 1 | 1 1 2
---------------+----+-------+----------+--------------+------------+------
x4o x . .    . ♦  8 |  8  4 | 2  4   0 | 24   *  *  * |  4  0  0 0 | 2 2 0
x . x3o .    . ♦  6 |  3  6 | 0  3   2 |  * 128  *  * |  1  1  1 0 | 1 1 1
. . x3o3o    . ♦  4 |  0  6 | 0  0   4 |  *   * 32  * |  0  2  0 1 | 1 0 2
. . x3o . *d3o ♦  4 |  0  6 | 0  0   4 |  *   *  * 32 |  0  0  2 1 | 0 1 2
---------------+----+-------+----------+--------------+------------+------
x4o x3o .    . ♦ 12 | 12 12 | 3 12   4 |  3   4  0  0 | 32  *  * * | 1 1 0
x . x3o3o    . ♦  8 |  4 12 | 0  6   8 |  0   4  2  0 |  * 32  * * | 1 0 1
x . x3o . *d3o ♦  8 |  4 12 | 0  6   8 |  0   4  0  2 |  *  * 32 * | 0 1 1
. . x3o3o *d3o ♦  8 |  0 24 | 0  0  32 |  0   0  8  8 |  *  *  * 4 | 0 0 2
---------------+----+-------+----------+--------------+------------+------
x4o x3o3o    . ♦ 16 | 16 24 | 4 24  16 |  6  16  4  0 |  4  4  0 0 | 8 * *
x4o x3o . *d3o ♦ 16 | 16 24 | 4 24  16 |  6  16  0  4 |  4  0  4 0 | * 8 *
x . x3o3o *d3o ♦ 16 |  8 48 | 0 24  64 |  0  32 16 16 |  0  8  8 2 | * * 4
```

```x x x3o3o4o

. . . . . . | 32 |  1  1  6 | 1  6  6  12 |  6  6  6  8 | 12  8  8 1 |  8 1 1
------------+----+----------+-------------+-------------+------------+-------
x . . . . . |  2 | 16  *  * | 1  6  0   0 |  6 12  0  0 | 12  8  0 0 |  8 1 0
. x . . . . |  2 |  * 16  * | 1  0  6   0 |  6  0 12  0 | 12  0  8 0 |  8 0 1
. . x . . . |  2 |  *  * 96 | 0  1  1   4 |  1  4  4  4 |  4  4  4 1 |  4 1 1
------------+----+----------+-------------+-------------+------------+-------
x x . . . . |  4 |  2  2  0 | 8  *  *   * ♦  6  0  0  0 | 12  0  0 0 |  8 0 0
x . x . . . |  4 |  2  0  2 | * 48  *   * |  1  4  0  0 |  4  4  0 0 |  4 1 0
. x x . . . |  4 |  0  2  2 | *  * 48   * |  1  0  4  0 |  4  0  4 0 |  4 0 1
. . x3o . . |  3 |  0  0  3 | *  *  * 128 |  0  1  1  2 |  1  2  2 1 |  2 1 1
------------+----+----------+-------------+-------------+------------+-------
x x x . . . ♦  8 |  4  4  4 | 2  2  2   0 | 24  *  *  * |  4  0  0 0 |  4 0 0
x . x3o . . ♦  6 |  3  0  6 | 0  3  0   2 |  * 64  *  * |  1  2  0 0 |  2 1 0
. x x3o . . ♦  6 |  0  3  6 | 0  0  3   2 |  *  * 64  * |  1  0  2 0 |  2 0 1
. . x3o3o . ♦  4 |  0  0  6 | 0  0  0   4 |  *  *  * 64 |  0  1  1 1 |  1 1 1
------------+----+----------+-------------+-------------+------------+-------
x x x3o . . ♦ 12 |  6  6 12 | 3  6  6   4 |  3  2  2  0 | 32  *  * * |  2 0 0
x . x3o3o . ♦  8 |  4  0 12 | 0  6  0   8 |  0  4  0  2 |  * 32  * * |  1 1 0
. x x3o3o . ♦  8 |  0  4 12 | 0  0  6   8 |  0  0  4  2 |  *  * 32 * |  1 0 1
. . x3o3o4o ♦  8 |  0  0 24 | 0  0  0  32 |  0  0  0 16 |  *  *  * 4 |  0 1 1
------------+----+----------+-------------+-------------+------------+-------
x x x3o3o . ♦ 16 |  8  8 24 | 4 12 12  16 |  6  8  8  4 |  4  2  2 0 | 16 * *
x . x3o3o4o ♦ 16 |  8  0 48 | 0 24  0  64 |  0 32  0 32 |  0 16  0 2 |  * 2 *
. x x3o3o4o ♦ 16 |  0  8 48 | 0  0 24  64 |  0  0 32 32 |  0  0 16 2 |  * * 2
```

```x x x3o3o *d3o

. . . . .    . | 32 |  1  1  6 | 1  6  6  12 |  6  6  6  4  4 | 12  4  4  4  4 1 | 4 4 1 1
---------------+----+----------+-------------+----------------+------------------+--------
x . . . .    . |  2 | 16  *  * | 1  6  0   0 |  6 12  0  0  0 | 12  4  4  0  0 0 | 4 4 1 0
. x . . .    . |  2 |  * 16  * | 1  0  6   0 |  6  0 12  0  0 | 12  0  0  4  4 0 | 4 4 0 1
. . x . .    . |  2 |  *  * 96 | 0  1  1   4 |  1  4  4  2  2 |  4  2  2  2  2 1 | 2 2 1 1
---------------+----+----------+-------------+----------------+------------------+--------
x x . . .    . |  4 |  2  2  0 | 8  *  *   * ♦  6  0  0  0  0 | 12  0  0  0  0 0 | 4 4 0 0
x . x . .    . |  4 |  2  0  2 | * 48  *   * |  1  4  0  0  0 |  4  2  2  0  0 0 | 2 2 1 0
. x x . .    . |  4 |  0  2  2 | *  * 48   * |  1  0  4  0  0 |  4  0  0  2  2 0 | 2 2 0 1
. . x3o .    . |  3 |  0  0  3 | *  *  * 128 |  0  1  1  1  1 |  1  1  1  1  1 1 | 1 1 1 1
---------------+----+----------+-------------+----------------+------------------+--------
x x x . .    . ♦  8 |  4  4  4 | 2  2  2   0 | 24  *  *  *  * |  4  0  0  0  0 0 | 2 2 0 0
x . x3o .    . ♦  6 |  3  0  6 | 0  3  0   2 |  * 64  *  *  * |  1  1  1  0  0 0 | 1 1 1 0
. x x3o .    . ♦  6 |  0  3  6 | 0  0  3   2 |  *  * 64  *  * |  1  0  0  1  1 0 | 1 1 0 1
. . x3o3o    . ♦  4 |  0  0  6 | 0  0  0   4 |  *  *  * 32  * |  0  1  0  1  0 1 | 1 0 1 1
. . x3o . *d3o ♦  4 |  0  0  6 | 0  0  0   4 |  *  *  *  * 32 |  0  0  1  0  1 1 | 0 1 1 1
---------------+----+----------+-------------+----------------+------------------+--------
x x x3o .    . ♦ 12 |  6  6 12 | 3  6  6   4 |  3  2  2  0  0 | 32  *  *  *  * * | 1 1 0 0
x . x3o3o    . ♦  8 |  4  0 12 | 0  6  0   8 |  0  4  0  2  0 |  * 16  *  *  * * | 1 0 1 0
x . x3o . *d3o ♦  8 |  4  0 12 | 0  6  0   8 |  0  4  0  0  2 |  *  * 16  *  * * | 0 1 1 0
. x x3o3o    . ♦  8 |  0  4 12 | 0  0  6   8 |  0  0  4  2  0 |  *  *  * 16  * * | 1 0 0 1
. x x3o . *d3o ♦  8 |  0  4 12 | 0  0  6   8 |  0  0  4  0  2 |  *  *  *  * 16 * | 0 1 0 1
. . x3o3o *d3o ♦  8 |  0  0 24 | 0  0  0  32 |  0  0  0  8  8 |  *  *  *  *  * 4 | 0 0 1 1
---------------+----+----------+-------------+----------------+------------------+--------
x x x3o3o    . ♦ 16 |  8  8 24 | 4 12 12  16 |  6  8  8  4  0 |  4  2  0  2  0 0 | 8 * * *
x x x3o . *d3o ♦ 16 |  8  8 24 | 4 12 12  16 |  6  8  8  0  4 |  4  0  2  0  2 0 | * 8 * *
x . x3o3o *d3o ♦ 16 |  8  0 48 | 0 24  0  64 |  0 32  0 16 16 |  0  8  8  0  0 2 | * * 2 *
. x x3o3o *d3o ♦ 16 |  0  8 48 | 0  0 24  64 |  0  0 32 16 16 |  0  0  0  8  8 2 | * * * 2
```

```xx xx3oo3oo4oo&#x   → height = 1
(hexip || hexip)

o. o.3o.3o.4o.    & | 32 |  1  6  1 |  6  12 1  6 | 12  8  6 12 |  8 1 12  8 | 1  8 1
--------------------+----+----------+-------------+-------------+------------+-------
x. .. .. .. ..    & |  2 | 16  *  * |  6   0 1  0 | 12  0  6  0 |  8 0 12  0 | 1  8 0
.. x. .. .. ..    & |  2 |  * 96  * |  1   4 0  1 |  4  4  1  4 |  4 1  4  4 | 1  4 1
oo oo3oo3oo4oo&#x   |  2 |  *  * 16 |  0   0 1  6 |  0  0  6 12 |  0 0 12  8 | 0  8 1
--------------------+----+----------+-------------+-------------+------------+-------
x. x. .. .. ..    & |  4 |  2  2  0 | 48   * *  * |  4  0  1  0 |  4 0  4  0 | 1  4 0
.. x.3o. .. ..    & |  3 |  0  3  0 |  * 128 *  * |  1  2  0  1 |  2 1  1  2 | 1  2 1
xx .. .. .. ..&#x   |  4 |  2  0  2 |  *   * 8  * ♦  0  0  6  0 |  0 0 12  0 | 0  8 0
.. xx .. .. ..&#x   |  4 |  0  2  2 |  *   * * 48 |  0  0  1  4 |  0 0  4  4 | 0  4 1
--------------------+----+----------+-------------+-------------+------------+-------
x. x.3o. .. ..    & ♦  6 |  3  6  0 |  3   2 0  0 | 64  *  *  * |  2 0  1  0 | 1  2 0
.. x.3o.3o. ..    & ♦  4 |  0  6  0 |  0   4 0  0 |  * 64  *  * |  1 1  0  1 | 1  1 1
xx xx .. .. ..&#x   ♦  8 |  4  4  4 |  2   0 2  2 |  *  * 24  * |  0 0  4  0 | 0  4 0
.. xx3oo .. ..&#x   ♦  6 |  0  6  3 |  0   2 0  3 |  *  *  * 64 |  0 0  1  2 | 0  2 1
--------------------+----+----------+-------------+-------------+------------+-------
x. x.3o.3o. ..    & ♦  8 |  4 12  0 |  6   8 0  0 |  4  2  0  0 | 32 *  *  * | 1  1 0
.. x.3o.3o.4o.    & ♦  8 |  0 24  0 |  0  32 0  0 |  0 16  0  0 |  * 4  *  * | 1  0 1
xx xx3oo .. ..&#x   ♦ 12 |  6 12  6 |  6   4 3  6 |  2  0  3  2 |  * * 32  * | 0  2 0
.. xx3oo3oo ..&#x   ♦  8 |  0 12  4 |  0   8 0  6 |  0  2  0  4 |  * *  * 32 | 0  1 1
--------------------+----+----------+-------------+-------------+------------+-------
x. x.3o.3o.4o.    & ♦ 16 |  8 48  0 | 24  64 0  0 | 32 32  0  0 | 16 2  0  0 | 2  * *
xx xx3oo3oo ..&#x   ♦ 16 |  8 24  8 | 12  16 4 12 |  8  4  6  8 |  2 0  4  2 | * 16 *
.. xx3oo3oo4oo&#x   ♦ 16 |  0 48  8 |  0  64 0 24 |  0 32  0 32 |  0 2  0 16 | *  * 2
```