As abstract polytope gadtef pixady is isomorphic to sadtef pixady, thereby replacing pentagrams by pentagons, resp. sidtid by gidtid and qrid by srid.

This Grünbaumian polychoron is fissary as its vertex figure happens to be a compound of 4 xf3/2ox&#q – within the army of the vertex figure of gadtaxady. By this vertex identification it can be seen that moreover the larger class of edges coincides intrinsically pairwise, and those further more then coincide one by one with those of the smaller class. Also both classes of triangles coincide one by one, thus it further becomes exotic.

Alternatively it could be obtained e.g. as a blend of gardtaxady and gadathiphi, blending out the gissid.

Incidence matrix according to Dynkin symbol

```x3o3o3/2x5/3*b

. . .   .      | 2400 |    3    6 |    3    6    3    3 |   1   3    3   1
---------------+------+-----------+---------------------+-----------------
x . .   .      |    2 | 3600    * |    2    2    0    0 |   1   2    1   0
. . .   x      |    2 |    * 7200 |    0    1    1    1 |   0   1    1   1
---------------+------+-----------+---------------------+-----------------
x3o .   .      |    3 |    3    0 | 2400    *    *    * |   1   1    0   0
x . .   x      |    4 |    2    2 |    * 3600    *    * |   0   1    1   0
. o .   x5/3*b |    5 |    0    5 |    *    * 1440    * |   0   1    0   1
. . o3/2x      |    3 |    0    3 |    *    *    * 2400 |   0   0    1   1
---------------+------+-----------+---------------------+-----------------
x3o3o   .      ♦    4 |    6    0 |    4    0    0    0 | 600   *    *   *
x3o .   x5/3*b ♦   60 |   60   60 |   20   30   12    0 |   * 120    *   *
x . o3/2x      ♦    6 |    3    6 |    0    3    0    2 |   *   * 1200   *
. o3o3/2x5/3*b ♦   20 |    0   60 |    0    0   12   20 |   *   *    * 120
```

```x3o3/2o3x5/3*b

. .   . .      | 2400 |    3    6 |    3    6    3    3 |   1   3    3   1
---------------+------+-----------+---------------------+-----------------
x .   . .      |    2 | 3600    * |    2    2    0    0 |   1   2    1   0
. .   . x      |    2 |    * 7200 |    0    1    1    1 |   0   1    1   1
---------------+------+-----------+---------------------+-----------------
x3o   . .      |    3 |    3    0 | 2400    *    *    * |   1   1    0   0
x .   . x      |    4 |    2    2 |    * 3600    *    * |   0   1    1   0
. o   . x5/3*b |    5 |    0    5 |    *    * 1440    * |   0   1    0   1
. .   o3x      |    3 |    0    3 |    *    *    * 2400 |   0   0    1   1
---------------+------+-----------+---------------------+-----------------
x3o3/2o .      ♦    4 |    6    0 |    4    0    0    0 | 600   *    *   *
x3o   . x5/3*b ♦   60 |   60   60 |   20   30   12    0 |   * 120    *   *
x .   o3x      ♦    6 |    3    6 |    0    3    0    2 |   *   * 1200   *
. o3/2o3x5/3*b ♦   20 |    0   60 |    0    0   12   20 |   *   *    * 120
```

```x3/2o3o3x5/2*b

.   . . .      | 2400 |    3    6 |    3    6    3    3 |   1   3    3   1
---------------+------+-----------+---------------------+-----------------
x   . . .      |    2 | 3600    * |    2    2    0    0 |   1   2    1   0
.   . . x      |    2 |    * 7200 |    0    1    1    1 |   0   1    1   1
---------------+------+-----------+---------------------+-----------------
x3/2o . .      |    3 |    3    0 | 2400    *    *    * |   1   1    0   0
x   . . x      |    4 |    2    2 |    * 3600    *    * |   0   1    1   0
.   o . x5/2*b |    5 |    0    5 |    *    * 1440    * |   0   1    0   1
.   . o3x      |    3 |    0    3 |    *    *    * 2400 |   0   0    1   1
---------------+------+-----------+---------------------+-----------------
x3/2o3o .      ♦    4 |    6    0 |    4    0    0    0 | 600   *    *   *
x3/2o . x5/2*b ♦   60 |   60   60 |   20   30   12    0 |   * 120    *   *
x   . o3x      ♦    6 |    3    6 |    0    3    0    2 |   *   * 1200   *
.   o3o3x5/2*b ♦   20 |    0   60 |    0    0   12   20 |   *   *    * 120
```

```x3/2o3/2o3/2x5/2*b

.   .   .   .      | 2400 |    3    6 |    3    6    3    3 |   1   3    3   1
-------------------+------+-----------+---------------------+-----------------
x   .   .   .      |    2 | 3600    * |    2    2    0    0 |   1   2    1   0
.   .   .   x      |    2 |    * 7200 |    0    1    1    1 |   0   1    1   1
-------------------+------+-----------+---------------------+-----------------
x3/2o   .   .      |    3 |    3    0 | 2400    *    *    * |   1   1    0   0
x   .   .   x      |    4 |    2    2 |    * 3600    *    * |   0   1    1   0
.   o   .   x5/2*b |    5 |    0    5 |    *    * 1440    * |   0   1    0   1
.   .   o3/2x      |    3 |    0    3 |    *    *    * 2400 |   0   0    1   1
-------------------+------+-----------+---------------------+-----------------
x3/2o3/2o   .      ♦    4 |    6    0 |    4    0    0    0 | 600   *    *   *
x3/2o   .   x5/2*b ♦   60 |   60   60 |   20   30   12    0 |   * 120    *   *
x   .   o3/2x      ♦    6 |    3    6 |    0    3    0    2 |   *   * 1200   *
.   o3/2o3/2x5/2*b ♦   20 |    0   60 |    0    0   12   20 |   *   *    * 120
```