Acronym | ditoh |
Name | ditetrahedral-octahedral honeycomb |
Confer |
|
External links |
This alternated faceting well can be varied to get all equal edge lengths, but still will not become uniform, because it incorporates a Johnson solid. It not even will become scaliform then, because tridpy itself is not orbiform. Thus it counts at most as CRF honeycomb.
However, dissecting all the tridpies would result in gytoh, which then is uniform again. – Further dissecting then the octs in each layer by parallel planes into pairs of squippies and recognizing the mirror symmetry between those layerborders thus results in 10Y4-8T-3.
Incidence matrix according to Dynkin symbol
o∞s2s6o3o (N → ∞) demi( . . . . . ) | N | 6 6 | 3 18 | 6 5 ------------------+---+-------+------+---- . s2s . . | 2 | 3N * | 0 4 | 2 2 sefa( . . s6o . ) | 2 | * 3N | 1 2 | 2 1 ------------------+---+-------+------+---- . . s6o . | 3 | 0 3 | N * | 2 0 sefa( . s2s6o . ) | 3 | 2 1 | * 6N | 1 1 ------------------+---+-------+------+---- . s2s6o . ♦ 6 | 6 6 | 2 6 | N * sefa( o∞s2s6o3o ) ♦ 5 | 6 3 | 0 6 | * N starting figure: o∞x x6o3o
o∞s2s3s6o (N → ∞) demi( . . . . . ) | 3N | 2 4 4 2 | 2 1 12 6 | 4 2 5 ------------------+----+-------------+-------------+-------- . s2s . . | 2 | 3N * * * | 0 0 4 0 | 2 0 2 . s 2 s . | 2 | * 6N * * | 0 0 2 2 | 1 1 2 sefa( . . s3s . ) | 2 | * * 6N * | 1 0 2 0 | 2 0 1 sefa( . . . s6o ) | 2 | * * * 3N | 0 1 0 2 | 0 2 1 ------------------+----+-------------+-------------+-------- . . s3s . | 3 | 0 0 3 0 | 2N * * * | 2 0 0 . . . s6o | 3 | 0 0 0 3 | * N * * | 0 2 0 sefa( . s2s3s . ) | 3 | 1 1 1 0 | * * 12N * | 1 0 1 sefa( . s 2 s6o ) | 3 | 0 2 0 1 | * * * 6N | 0 1 1 ------------------+----+-------------+-------------+-------- . s2s3s . ♦ 6 | 3 3 6 0 | 2 0 6 0 | 2N * * . s 2 s6o ♦ 6 | 0 6 0 6 | 0 2 0 6 | * N * sefa( o∞s2s3s6o ) ♦ 5 | 2 4 2 1 | 0 0 4 2 | * * 3N starting figure: o∞x x3x6o
o∞s2s3s3s3*c (N → ∞) demi( . . . . . ) | 3N | 2 2 2 2 2 2 | 1 1 1 6 6 6 | 2 2 2 5 ---------------------+----+-------------------+----------------+--------- . s2s . . | 2 | 3N * * * * * | 0 0 0 2 2 0 | 1 1 0 2 . s 2 s . | 2 | * 3N * * * * | 0 0 0 2 0 2 | 1 0 1 2 . s . 2 s | 2 | * * 3N * * * | 0 0 0 0 2 2 | 0 1 1 2 sefa( . . s3s . ) | 2 | * * * 3N * * | 1 0 0 2 0 0 | 2 0 0 1 sefa( . . s . s3*c ) | 2 | * * * * 3N * | 0 1 0 0 2 0 | 0 2 0 1 sefa( . . . s3s ) | 2 | * * * * * 3N | 0 0 1 0 0 2 | 0 0 2 1 ---------------------+----+-------------------+----------------+--------- . . s3s . | 3 | 0 0 0 3 0 0 | N * * * * * | 2 0 0 0 . . s . s3*c | 3 | 0 0 0 0 3 0 | * N * * * * | 0 2 0 0 . . . s3s | 3 | 0 0 0 0 0 3 | * * N * * * | 0 0 2 0 sefa( . s2s3s . ) | 3 | 1 1 0 1 0 0 | * * * 6N * * | 1 0 0 1 sefa( . s2s . s3*c ) | 3 | 1 0 1 0 1 0 | * * * * 6N * | 0 1 0 1 sefa( . s 2 s3s ) | 3 | 0 1 1 0 0 1 | * * * * * 6N | 0 0 1 1 ---------------------+----+-------------------+----------------+--------- . s2s3s . ♦ 6 | 3 3 0 6 0 0 | 2 0 0 6 0 0 | N * * * . s2s . s3*c ♦ 6 | 3 0 3 0 6 0 | 0 2 0 0 6 0 | * N * * . s 2 s3s ♦ 6 | 0 3 3 0 0 6 | 0 0 2 0 0 6 | * * N * sefa( o∞s2s3s3s3*c ) ♦ 5 | 2 2 2 1 1 1 | 0 0 0 2 2 2 | * * * 3N starting figure: o∞x x3x3x3*c
© 2004-2025 | top of page |