Acronym | quotacog |
Name | quasitericellated hexacontatetrapeton |
Circumradius | sqrt[(11-6 sqrt(2))/2] = 1.121320 |
Coordinates | ((2 sqrt(2)-1)/2, (sqrt(2)-1)/2, (sqrt(2)-1)/2, (sqrt(2)-1)/2, (sqrt(2)-1)/2, 1/2) & all permutations, all changes of sign |
Face vector | 1920, 8640, 16320, 15360, 6488, 728 |
Confer |
|
As abstract polytope quotacog is isomorphic to tacog, thereby replacing octagrams by octagons, resp. stop by op and quith by tic, resp. tistodip by todip, quithip by ticcup, and quitit by tat, resp. stotet by otet, traquith by tratic, quititip by tattip, and quittin by tan.
Incidence matrix according to Dynkin symbol
x3o3o3o3x4/3x . . . . . . | 1920 | 4 4 1 | 6 12 4 6 4 | 4 12 6 12 12 4 6 | 1 4 4 6 12 4 12 1 4 | 1 1 4 6 4 1 --------------+------+---------------+-------------------------+-----------------------------------+--------------------------------------+--------------------- x . . . . . | 2 | 3840 * * | 3 3 1 0 0 | 3 6 3 3 3 0 0 | 1 3 3 3 6 1 3 0 0 | 1 1 3 3 1 0 . . . . x . | 2 | * 3840 * | 0 3 0 3 1 | 0 3 0 6 3 3 3 | 0 1 0 3 3 3 6 1 3 | 1 0 1 3 3 1 . . . . . x | 2 | * * 960 | 0 0 4 0 4 | 0 0 6 0 12 0 6 | 0 0 4 0 12 0 12 0 4 | 0 1 4 6 4 1 --------------+------+---------------+-------------------------+-----------------------------------+--------------------------------------+--------------------- x3o . . . . | 3 | 3 0 0 | 3840 * * * * | 2 2 1 0 0 0 0 | 1 2 2 1 2 0 0 0 0 | 1 1 2 1 0 0 x . . . x . | 4 | 2 2 0 | * 5760 * * * | 0 2 0 2 1 0 0 | 0 1 0 2 2 1 2 0 0 | 1 0 1 2 1 0 x . . . . x | 4 | 2 0 2 | * * 1920 * * | 0 0 3 0 3 0 0 | 0 0 3 0 6 0 3 0 0 | 0 1 3 3 1 0 . . . o3x . | 3 | 0 3 0 | * * * 3840 * | 0 0 0 2 0 2 1 | 0 0 0 1 0 2 2 1 2 | 1 0 0 1 2 1 . . . . x4/3x | 8 | 0 4 4 | * * * * 960 | 0 0 0 0 3 0 3 | 0 0 0 0 3 0 6 0 3 | 0 0 1 3 3 1 --------------+------+---------------+-------------------------+-----------------------------------+--------------------------------------+--------------------- x3o3o . . . ♦ 4 | 6 0 0 | 4 0 0 0 0 | 1920 * * * * * * | 1 1 1 0 0 0 0 0 0 | 1 1 1 0 0 0 x3o . . x . ♦ 6 | 6 3 0 | 2 3 0 0 0 | * 3840 * * * * * | 0 1 0 1 1 0 0 0 0 | 1 0 1 1 0 0 x3o . . . x ♦ 6 | 6 0 3 | 2 0 3 0 0 | * * 1920 * * * * | 0 0 2 0 2 0 0 0 0 | 0 1 2 1 0 0 x . . o3x . ♦ 6 | 3 6 0 | 0 3 0 2 0 | * * * 3840 * * * | 0 0 0 1 0 1 1 0 0 | 1 0 0 1 1 0 x . . . x4/3x ♦ 16 | 8 8 8 | 0 4 4 0 2 | * * * * 1440 * * | 0 0 0 0 2 0 2 0 0 | 0 0 1 2 1 0 . . o3o3x . ♦ 4 | 0 6 0 | 0 0 0 4 0 | * * * * * 1920 * | 0 0 0 0 0 1 0 1 1 | 1 0 0 0 1 1 . . . o3x4/3x ♦ 24 | 0 24 12 | 0 0 0 8 6 | * * * * * * 480 | 0 0 0 0 0 0 2 0 2 | 0 0 0 1 2 1 --------------+------+---------------+-------------------------+-----------------------------------+--------------------------------------+--------------------- x3o3o3o . . ♦ 5 | 10 0 0 | 10 0 0 0 0 | 5 0 0 0 0 0 0 | 384 * * * * * * * * | 1 1 0 0 0 0 x3o3o . x . ♦ 8 | 12 4 0 | 8 6 0 0 0 | 2 4 0 0 0 0 0 | * 960 * * * * * * * | 1 0 1 0 0 0 x3o3o . . x ♦ 8 | 12 0 4 | 8 0 6 0 0 | 2 0 4 0 0 0 0 | * * 960 * * * * * * | 0 1 1 0 0 0 x3o . o3x . ♦ 9 | 9 9 0 | 3 9 0 3 0 | 0 3 0 3 0 0 0 | * * * 1280 * * * * * | 1 0 0 1 0 0 x3o . . x4/3x ♦ 24 | 24 12 12 | 8 12 12 0 3 | 0 4 4 0 3 0 0 | * * * * 960 * * * * | 0 0 1 1 0 0 x . o3o3x . ♦ 8 | 4 12 0 | 0 6 0 8 0 | 0 0 0 4 0 2 0 | * * * * * 960 * * * | 1 0 0 0 1 0 x . . o3x4/3x ♦ 48 | 24 48 24 | 0 24 12 16 12 | 0 0 0 8 6 0 2 | * * * * * * 480 * * | 0 0 0 1 1 0 . o3o3o3x . ♦ 5 | 0 10 0 | 0 0 0 10 0 | 0 0 0 0 0 5 0 | * * * * * * * 384 * | 1 0 0 0 0 1 . . o3o3x4/3x ♦ 64 | 0 96 32 | 0 0 0 64 24 | 0 0 0 0 0 16 8 | * * * * * * * * 120 | 0 0 0 0 1 1 --------------+------+---------------+-------------------------+-----------------------------------+--------------------------------------+--------------------- x3o3o3o3x . ♦ 30 | 60 60 0 | 60 90 0 60 0 | 30 60 0 60 0 30 0 | 6 15 0 20 0 15 0 6 0 | 64 * * * * * x3o3o3o . x ♦ 10 | 20 0 5 | 20 0 10 0 0 | 10 0 10 0 0 0 0 | 2 0 5 0 0 0 0 0 0 | * 192 * * * * x3o3o . x4/3x ♦ 32 | 48 16 16 | 32 24 24 0 4 | 8 16 16 0 6 0 0 | 0 4 4 0 4 0 0 0 0 | * * 240 * * * x3o . o3x4/3x ♦ 72 | 72 72 36 | 24 72 36 24 18 | 0 24 12 24 18 0 3 | 0 0 0 8 6 0 3 0 0 | * * * 160 * * x . o3o3x4/3x ♦ 128 | 64 192 64 | 0 96 32 128 48 | 0 0 0 64 24 32 16 | 0 0 0 0 0 16 8 0 2 | * * * * 60 * . o3o3o3x4/3x ♦ 160 | 0 320 80 | 0 0 0 320 80 | 0 0 0 0 0 160 40 | 0 0 0 0 0 0 0 32 10 | * * * * * 12
© 2004-2024 | top of page |