Acronym | quititip |
Name | quasitruncated-tesseract prism |
Circumradius | sqrt[11-6 sqrt(2)]/2 = 0.792893 |
Coordinates | ((sqrt(2)-1)/2, (sqrt(2)-1)/2, (sqrt(2)-1)/2, 1/2, 1/2) & all permutations in all but last coord., all changes of sign |
Face vector | 128, 320, 304, 136, 26 |
Confer |
|
As abstract polytope quititip is isomorphic to tattip, thereby replacing the octagrams by octagons, resp. quith by tic and stop by op, resp. quithip by ticcup and quitit by tat.
Incidence matrix according to Dynkin symbol
x o3o3x4/3x . . . . . | 128 | 1 3 1 | 3 1 3 3 | 3 3 1 3 | 1 3 1 ------------+-----+-----------+--------------+-------------+------- x . . . . | 2 | 64 * * | 3 1 0 0 | 3 3 0 0 | 1 3 0 . . . x . | 2 | * 192 * | 1 0 2 1 | 2 1 1 2 | 1 2 1 . . . . x | 2 | * * 64 | 0 1 0 3 | 0 3 0 3 | 0 3 1 ------------+-----+-----------+--------------+-------------+------- x . . x . | 4 | 2 2 0 | 96 * * * | 2 1 0 0 | 1 2 0 x . . . x | 4 | 2 0 2 | * 32 * * | 0 3 0 0 | 0 3 0 . . o3x . | 3 | 0 3 0 | * * 128 * | 1 0 1 1 | 1 1 1 . . . x4/3x | 8 | 0 4 4 | * * * 48 | 0 1 0 2 | 0 2 1 ------------+-----+-----------+--------------+-------------+------- x . o3x . ♦ 6 | 3 6 0 | 3 0 2 0 | 64 * * * | 1 1 0 x . . x4/3x ♦ 16 | 8 8 8 | 4 4 0 2 | * 24 * * | 0 2 0 . o3o3x . ♦ 4 | 0 6 0 | 0 0 4 0 | * * 32 * | 1 0 1 . . o3x4/3x ♦ 24 | 0 24 12 | 0 0 8 6 | * * * 16 | 0 1 1 ------------+-----+-----------+--------------+-------------+------- x o3o3x . ♦ 8 | 4 12 0 | 6 0 8 0 | 4 0 2 0 | 16 * * x . o3x4/3x ♦ 48 | 24 48 24 | 24 12 16 12 | 8 6 0 2 | * 8 * . o3o3x4/3x ♦ 64 | 0 96 32 | 0 0 64 24 | 0 0 16 8 | * * 2
oo3oo3xx4/3xx&#x → height = 1
(quitit || quitit)
o.3o.3o.4/3o. | 64 * | 3 1 1 0 0 | 3 3 3 1 0 0 | 1 3 3 3 0 0 | 1 1 3 0
.o3.o3.o4/3.o | * 64 | 0 0 1 3 1 | 0 0 3 1 3 3 | 0 0 3 3 1 3 | 0 1 3 1
-----------------+-------+----------------+-------------------+-----------------+---------
.. .. x. .. | 2 0 | 96 * * * * | 2 1 1 0 0 0 | 1 2 2 1 0 0 | 1 1 2 0
.. .. .. x. | 2 0 | * 32 * * * | 0 3 0 1 0 0 | 0 3 0 3 0 0 | 1 0 3 0
oo3oo3oo4/3oo&#x | 1 1 | * * 64 * * | 0 0 3 1 0 0 | 0 0 3 3 0 0 | 0 1 3 0
.. .. .x .. | 0 2 | * * * 96 * | 0 0 1 0 2 1 | 0 0 2 1 1 2 | 0 1 2 1
.. .. .. .x | 0 2 | * * * * 32 | 0 0 0 1 0 3 | 0 0 0 3 0 3 | 0 0 3 1
-----------------+-------+----------------+-------------------+-----------------+---------
.. o.3x. .. | 3 0 | 3 0 0 0 0 | 64 * * * * * | 1 1 1 0 0 0 | 1 1 1 0
.. .. x.4/3x. | 8 0 | 4 4 0 0 0 | * 24 * * * * | 0 2 0 1 0 0 | 1 0 2 0
.. .. xx ..&#x | 2 2 | 1 0 2 1 0 | * * 96 * * * | 0 0 2 1 0 0 | 0 1 2 0
.. .. .. xx&#x | 2 2 | 0 1 2 0 1 | * * * 32 * * | 0 0 0 3 0 0 | 0 0 3 0
.. .o3.x .. | 0 3 | 0 0 0 3 0 | * * * * 64 * | 0 0 1 0 1 1 | 0 1 1 1
.. .. .x4/3.x | 0 8 | 0 0 0 4 4 | * * * * * 24 | 0 0 0 1 0 2 | 0 0 2 1
-----------------+-------+----------------+-------------------+-----------------+---------
o.3o.3x. .. ♦ 4 0 | 6 0 0 0 0 | 4 0 0 0 0 0 | 16 * * * * * | 1 1 0 0
.. o.3x.4/3x. ♦ 24 0 | 24 12 0 0 0 | 8 6 0 0 0 0 | * 8 * * * * | 1 0 1 0
.. oo3xx ..&#x ♦ 3 3 | 3 0 3 3 0 | 1 0 3 0 1 0 | * * 64 * * * | 0 1 1 0
.. .. xx4/3xx&#x ♦ 8 8 | 4 4 8 4 4 | 0 1 4 4 0 1 | * * * 24 * * | 0 0 2 0
.o3.o3.x .. ♦ 0 4 | 0 0 0 6 0 | 0 0 0 0 4 0 | * * * * 16 * | 0 1 0 1
.. .o3.x4/3.x ♦ 0 24 | 0 0 0 24 12 | 0 0 0 0 8 6 | * * * * * 8 | 0 0 1 1
-----------------+-------+----------------+-------------------+-----------------+---------
o.3o.3x.4/3x. ♦ 64 0 | 96 32 0 0 0 | 64 24 0 0 0 0 | 16 8 0 0 0 0 | 1 * * *
oo3oo3xx ..&#x ♦ 4 4 | 6 0 4 6 0 | 4 0 6 0 4 0 | 1 0 4 0 1 0 | * 16 * *
.. oo3xx4/3xx&#x ♦ 24 24 | 24 12 24 24 12 | 8 6 24 12 8 6 | 0 1 8 6 0 1 | * * 8 *
.o3.o3.x4/3.x ♦ 0 64 | 0 0 0 96 32 | 0 0 0 0 64 24 | 0 0 0 0 16 8 | * * * 1
© 2004-2025 | top of page |