Acronym pextah
Name partially (mono-)expanded tesseractihexadecachoron
Lace city
in approx. ASCII-art
x4o u4o x4q   x4q u4o x4o
                         
u4o     o4Q   o4Q     u4o
                         		Q=2q
x4q o4Q           o4Q x4q
                         
u4o     o4Q   o4Q     u4o
                         
x4o u4o x4q   x4q u4o x4o
Face vector 120, 240, 152, 32
Confer
uniform relative:
tah  
related CnRFs:
pabextah   pac grit  
general polytopal classes:
partial Stott expansions  

The non-regular hexagons {(h,H,H)2} are diagonally elongated squares. Its vertex angles are h = 90° resp. H = 135°.


Incidence matrix according to Dynkin symbol

xoooox3xuxxux4ooqqoo&#xt   → all but medial heights = 1/sqrt(2) = 0.707107
                             medial height  = 1
(toe || pseudo u-co || pseudo (x,q)-tic || pseudo (x,q)-tic || pseudo u-co || toe)

o.....3o.....4o.....     & | 48  *  * |  1  2  1  0  0  0 |  2  1  1  2  0  0  0 | 1  2 1 0
.o....3.o....4.o....     & |  * 24  * |  0  0  2  2  0  0 |  0  0  1  4  1  0  0 | 0  2 2 0
..o...3..o...4..o...     & |  *  * 48 |  0  0  0  1  2  1 |  0  0  0  2  1  1  2 | 0  1 2 1
---------------------------+----------+-------------------+----------------------+---------
x..... ...... ......     & |  2  0  0 | 24  *  *  *  *  * |  2  0  1  0  0  0  0 | 1  2 0 0
...... x..... ......     & |  2  0  0 |  * 48  *  *  *  * |  1  1  0  1  0  0  0 | 1  1 1 0
oo....3oo....4oo....&#x  & |  1  1  0 |  *  * 48  *  *  * |  0  0  1  2  0  0  0 | 0  2 1 0
.oo...3.oo...4.oo...&#x  & |  0  1  1 |  *  *  * 48  *  * |  0  0  0  2  1  0  0 | 0  1 2 0
...... ..x... ......     & |  0  0  2 |  *  *  *  * 48  * |  0  0  0  1  0  1  1 | 0  1 1 1
..oo..3..oo..4..oo..&#x    |  0  0  2 |  *  *  *  *  * 24 |  0  0  0  0  1  0  2 | 0  0 2 1
---------------------------+----------+-------------------+----------------------+---------
x.....3x..... ......     & |  6  0  0 |  3  3  0  0  0  0 | 16  *  *  *  *  *  * | 1  1 0 0
...... x.....4o.....     & |  4  0  0 |  0  4  0  0  0  0 |  * 12  *  *  *  *  * | 1  0 1 0
xo.... ...... ......&#x  & |  2  1  0 |  1  0  2  0  0  0 |  *  * 24  *  *  *  * | 0  2 0 0
...... xux... ......&#xt & |  2  2  2 |  0  1  2  2  1  0 |  *  *  * 48  *  *  * | 0  1 1 0
...... ...... .oqqo.&#xt   |  0  2  4 |  0  0  0  4  0  2 |  *  *  *  * 12  *  * | 0  0 2 0  {(h,H,H)2}
..o...3..x... ......     & |  0  0  3 |  0  0  0  0  3  0 |  *  *  *  *  * 16  * | 0  1 0 1
...... ..xx.. ......&#x    |  0  0  4 |  0  0  0  0  2  2 |  *  *  *  *  *  * 24 | 0  0 1 1
---------------------------+----------+-------------------+----------------------+---------
x.....3x.....4o.....     &  24  0  0 | 12 24  0  0  0  0 |  8  6  0  0  0  0  0 | 2  * * *
xoo...3xux... ......&#xt &   6  3  3 |  3  3  6  3  3  0 |  1  0  3  3  0  1  0 | * 16 * *
...... xuxxux4ooqqoo&#xt     8  8 16 |  0  8  8 16  8  8 |  0  2  0  8  4  0  4 | *  * 6 *
..xx..3..oo.. ......&#x      0  0  6 |  0  0  0  0  6  3 |  0  0  0  0  0  2  3 | *  * * 8

((xoo3xux4ooq Xwx))&#zxt   → heights = 0, X=Q+x=w+q = 3.828427
(tegum sum of (x,x,X)-tope, (u,w)-cope, and (x,q,x)-ticcup)

  o..3o..4o.. o..        | 48  *  * |  1  2  1  0  0  0 |  2  1  1  2  0  0  0 | 1  2 1 0
  .o.3.o.4.o. .o.        |  * 24  * |  0  0  2  2  0  0 |  0  0  1  4  1  0  0 | 0  2 2 0
  ..o3..o4..o ..o        |  *  * 48 |  0  0  0  1  2  1 |  0  0  0  2  1  1  2 | 0  1 2 1
-------------------------+----------+-------------------+----------------------+---------
  x.. ... ... ...        |  2  0  0 | 24  *  *  *  *  * |  2  0  1  0  0  0  0 | 1  2 0 0
  ... x.. ... ...        |  2  0  0 |  * 48  *  *  *  * |  1  1  0  1  0  0  0 | 1  1 1 0
  oo.3oo.4oo. oo.  &#x   |  1  1  0 |  *  * 48  *  *  * |  0  0  1  2  0  0  0 | 0  2 1 0
  .oo3.oo4.oo .oo  &#x   |  0  1  1 |  *  *  * 48  *  * |  0  0  0  2  1  0  0 | 0  1 2 0
  ... ..x ... ...        |  0  0  2 |  *  *  *  * 48  * |  0  0  0  1  0  1  1 | 0  1 1 1
  ... ... ... ..x        |  0  0  2 |  *  *  *  *  * 24 |  0  0  0  0  1  0  2 | 0  0 2 1
-------------------------+----------+-------------------+----------------------+---------
  x..3x.. ... ...        |  6  0  0 |  3  3  0  0  0  0 | 16  *  *  *  *  *  * | 1  1 0 0
 ... x..4o.. ...        |  4  0  0 |  0  4  0  0  0  0 |  * 12  *  *  *  *  * | 1  0 1 0
  xo. ... ... ...  &#x   |  2  1  0 |  1  0  2  0  0  0 |  *  * 24  *  *  *  * | 0  2 0 0
  ... xux ... ...  &#xt  |  2  2  2 |  0  1  2  2  1  0 |  *  *  * 48  *  *  * | 0  1 1 0
((... ... .oq .wx))&#zx  |  0  2  4 |  0  0  0  4  0  2 |  *  *  *  * 12  *  * | 0  0 2 0  {(h,H,H)2}
  ..o3..x ... ...        |  0  0  3 |  0  0  0  0  3  0 |  *  *  *  *  * 16  * | 0  1 0 1
  ... ..x ... ..x        |  0  0  4 |  0  0  0  0  2  2 |  *  *  *  *  *  * 24 | 0  0 1 1
-------------------------+----------+-------------------+----------------------+---------
  x..3x..4o.. ...         24  0  0 | 12 24  0  0  0  0 |  8  6  0  0  0  0  0 | 2  * * *
  xoo3xux ... ...  &#xt    6  3  3 |  3  3  6  3  3  0 |  1  0  3  3  0  1  0 | * 16 * *
((... xux4ooq Xwx))&#zxt   8  8 16 |  0  8  8 16  8  8 |  0  2  0  8  4  0  4 | *  * 6 *
  ..x3..o ... ..x          0  0  6 |  0  0  0  0  6  3 |  0  0  0  0  0  2  3 | *  * * 8

© 2004-2026
top of page