Acronym pac grit
Name partially (mono-)contracted great rhombated tesseract
Lace city
in approx. ASCII-art
x4x u4x x4w   x4w u4x x4x
                         
u4x     o4X   o4X     u4x
                         		X=x+2q=w+q
x4w o4X           o4X x4w
                         
u4x     o4X   o4X     u4x
                         
x4x u4x x4w   x4w u4x x4x
Confer
uniform relative:
grit  
related CnRFs:
pextah   pabextah  
general polytopal classes:
partial Stott expansions  

The non-regular hexagons {(h,H,H)2} are diagonally elongated squares. Its vertex angles are h = 90° resp. H = 135°.


Incidence matrix according to Dynkin symbol

xooox3xuxux4xxwxx&#xt   → all but central heights = 1/sqrt(2) = 0.707107
                          central height = 1
(girco || pseudo (u,x)-tic || pseudo (x,w)-tic || pseudo (u,x)-tic || girco)

o....3o....4o....     & | 96  *  * |  1  1  1  1  0  0  0 |  1  1  1  1  1  1  0 0 | 1  1  1 1
.o...3.o...4.o...     & |  * 48  * |  0  0  0  2  1  1  0 |  0  0  0  1  2  2  1 0 | 0  1  1 2
..o..3..o..4..o..       |  *  * 24 |  0  0  0  0  0  2  2 |  0  0  0  0  4  0  1 1 | 0  2  0 2
------------------------+----------+----------------------+------------------------+----------
x.... ..... .....     & |  2  0  0 | 48  *  *  *  *  *  * |  1  1  0  1  0  0  0 0 | 1  1  1 0
..... x.... .....     & |  2  0  0 |  * 48  *  *  *  *  * |  1  0  1  0  1  0  0 0 | 1  1  0 1
..... ..... x....     & |  2  0  0 |  *  * 48  *  *  *  * |  0  1  1  0  0  1  0 0 | 1  0  1 1
oo...3oo...4oo...&#x  & |  1  1  0 |  *  *  * 96  *  *  * |  0  0  0  1  1  1  0 0 | 0  1  1 1
..... ..... .x...     & |  0  2  0 |  *  *  *  * 24  *  * |  0  0  0  0  0  2  1 0 | 0  0  1 2
.oo..3.oo..4.oo..&#x  & |  0  1  1 |  *  *  *  *  * 48  * |  0  0  0  0  2  0  1 0 | 0  1  0 2
..... ..x.. .....       |  0  0  2 |  *  *  *  *  *  * 24 |  0  0  0  0  2  0  0 1 | 0  2  0 1
------------------------+----------+----------------------+------------------------+----------
x....3x.... .....     & |  6  0  0 |  3  3  0  0  0  0  0 | 16  *  *  *  *  *  * * | 1  1  0 0
x.... ..... x....     & |  4  0  0 |  2  0  2  0  0  0  0 |  * 24  *  *  *  *  * * | 1  0  1 0
..... x....4x....     & |  8  0  0 |  0  4  4  0  0  0  0 |  *  * 12  *  *  *  * * | 1  0  0 1
xo... ..... .....&#x  & |  2  1  0 |  1  0  0  2  0  0  0 |  *  *  * 48  *  *  * * | 0  1  1 0
..... xux.. .....&#xt & |  2  2  2 |  0  1  0  2  0  2  1 |  *  *  *  * 48  *  * * | 0  1  0 1
..... ..... xx...&#x  & |  2  2  0 |  0  0  1  2  1  0  0 |  *  *  *  *  * 48  * * | 0  0  1 1
..... ..... .xwx.&#xt   |  0  4  2 |  0  0  0  0  2  4  0 |  *  *  *  *  *  * 12 * | 0  0  0 2  {(h,H,H)2}
..o..3..x.. .....       |  0  0  3 |  0  0  0  0  0  0  3 |  *  *  *  *  *  *  * 8 | 0  2  0 0
------------------------+----------+----------------------+------------------------+----------
x....3x....4x....     &  48  0  0 | 24 24 24  0  0  0  0 |  8 12  6  0  0  0  0 0 | 2  *  * *
xoo..3xux.. .....&#xt &   6  3  3 |  3  3  0  6  0  3  3 |  1  0  0  3  3  0  0 1 | * 16  * *
xo... ..... xx...&#x  &   4  2  0 |  2  0  2  4  1  0  0 |  0  1  0  2  0  2  0 0 | *  * 24 *
..... xuxux4xxwxx&#xt    16 16  8 |  0  8  8 16  8 16  4 |  0  0  2  0  8  8  4 0 | *  *  * 6

xoo3xux4xxw Qqo&#zxt   → heights = 0, Q=2q = 2.828427
(tegum sum of (x,x,x,Q)-gircope, (u,x,q)-ticcup, and (x,w)-tic)

o..3o..4o.. o..      | 96  *  * |  1  1  1  1  0  0  0 |  1  1  1  1  1  1  0 0 | 1  1  1 1
.o.3.o.4.o. .o.      |  * 48  * |  0  0  0  2  1  1  0 |  0  0  0  1  2  2  1 0 | 0  1  1 2
..o3..o4..o ..o      |  *  * 24 |  0  0  0  0  0  2  2 |  0  0  0  0  4  0  1 1 | 0  2  0 2
---------------------+----------+----------------------+------------------------+----------
x.. ... ... ...      |  2  0  0 | 48  *  *  *  *  *  * |  1  1  0  1  0  0  0 0 | 1  1  1 0
... x.. ... ...      |  2  0  0 |  * 48  *  *  *  *  * |  1  0  1  0  1  0  0 0 | 1  1  0 1
... ... x.. ...      |  2  0  0 |  *  * 48  *  *  *  * |  0  1  1  0  0  1  0 0 | 1  0  1 1
oo.3oo.4oo. oo.&#x   |  1  1  0 |  *  *  * 96  *  *  * |  0  0  0  1  1  1  0 0 | 0  1  1 1
... ... .x. ...      |  0  2  0 |  *  *  *  * 24  *  * |  0  0  0  0  0  2  1 0 | 0  0  1 2
.oo3.oo4.oo .oo&#x   |  0  1  1 |  *  *  *  *  * 48  * |  0  0  0  0  2  0  1 0 | 0  1  0 2
... ..x ... ...      |  0  0  2 |  *  *  *  *  *  * 24 |  0  0  0  0  2  0  0 1 | 0  2  0 1
---------------------+----------+----------------------+------------------------+----------
x..3x.. ... ...      |  6  0  0 |  3  3  0  0  0  0  0 | 16  *  *  *  *  *  * * | 1  1  0 0
x.. ... x.. ...      |  4  0  0 |  2  0  2  0  0  0  0 |  * 24  *  *  *  *  * * | 1  0  1 0
... x..4x.. ...      |  8  0  0 |  0  4  4  0  0  0  0 |  *  * 12  *  *  *  * * | 1  0  0 1
xo. ... ... ...&#x   |  2  1  0 |  1  0  0  2  0  0  0 |  *  *  * 48  *  *  * * | 0  1  1 0
... xux ... ...&#xt  |  2  2  2 |  0  1  0  2  0  2  1 |  *  *  *  * 48  *  * * | 0  1  0 1
... ... xx. ...&#x   |  2  2  0 |  0  0  1  2  1  0  0 |  *  *  *  *  * 48  * * | 0  0  1 1
... ... .xw .qo&#zx  |  0  4  2 |  0  0  0  0  2  4  0 |  *  *  *  *  *  * 12 * | 0  0  0 2  {(h,H,H)2}
..o3..x ... ...      |  0  0  3 |  0  0  0  0  0  0  3 |  *  *  *  *  *  *  * 8 | 0  2  0 0
---------------------+----------+----------------------+------------------------+----------
x..3x..4x.. ...       48  0  0 | 24 24 24  0  0  0  0 |  8 12  6  0  0  0  0 0 | 2  *  * *
xoo3xux ... ...&#xt    6  3  3 |  3  3  0  6  0  3  3 |  1  0  0  3  3  0  0 1 | * 16  * *
xo. ... xx. ...&#x     4  2  0 |  2  0  2  4  1  0  0 |  0  1  0  2  0  2  0 0 | *  * 24 *
... xux4xxw Qqo&#zxt  16 16  8 |  0  8  8 16  8 16  4 |  0  0  2  0  8  8  4 0 | *  *  * 6

© 2004-2019
top of page