Acronym | pac girco |
Name | partially (mono-)contracted great rhombicuboctahedron |
| |
Circumradius | ... |
Vertex figure | [4,6,8], [4,6,H], [h,6,6] |
Lace city in approx. ASCII-art |
o q q o o Q Q o q Q Q q (Q=2q) q Q Q q o Q Q o o q q o |
x w w x x W W x (W=u+w) w W W w x W W x x w w x | |
Dihedral angles
(at margins) |
|
Face vector | 40, 60, 22 |
Confer |
|
The non-regular hexagons {(h,H,H)2} are diagonally elongated squares. Its vertex angles are h = 90° resp. H = 135°.
Incidence matrix according to Dynkin symbol
xuxux4xxwxx&#xt → all heights = 1/sqrt(2) = 0.707107 ({8} || pseudo (u,x)-{8} || pseudo (x,w)-{8} || pseudo (u,x)-{8} || {8}) o....4o.... | 8 * * * * | 1 1 1 0 0 0 0 0 0 0 0 | 1 1 1 0 0 0 0 [4,6,8] .o...4.o... | * 8 * * * | 0 0 1 1 1 0 0 0 0 0 0 | 0 1 1 1 0 0 0 [4,6,H] ..o..4..o.. | * * 8 * * | 0 0 0 0 1 1 1 0 0 0 0 | 0 1 0 1 1 0 0 [h,6,6] ...o.4...o. | * * * 8 * | 0 0 0 0 0 0 1 1 1 0 0 | 0 0 0 1 1 1 0 [4,6,H] ....o4....o | * * * * 8 | 0 0 0 0 0 0 0 0 1 1 1 | 0 0 0 0 1 1 1 [4,6,8] ----------------+-----------+-----------------------+-------------- x.... ..... | 2 0 0 0 0 | 4 * * * * * * * * * * | 1 1 0 0 0 0 0 ..... x.... | 2 0 0 0 0 | * 4 * * * * * * * * * | 1 0 1 0 0 0 0 oo...4oo...&#x | 1 1 0 0 0 | * * 8 * * * * * * * * | 0 1 1 0 0 0 0 ..... .x... | 0 2 0 0 0 | * * * 4 * * * * * * * | 0 0 1 1 0 0 0 .oo..4.oo..&#x | 0 1 1 0 0 | * * * * 8 * * * * * * | 0 1 0 1 0 0 0 ..x.. ..... | 0 0 2 0 0 | * * * * * 4 * * * * * | 0 1 0 0 1 0 0 ..oo.4..oo.&#x | 0 0 1 1 0 | * * * * * * 8 * * * * | 0 0 0 1 1 0 0 ..... ...x. | 0 0 0 2 0 | * * * * * * * 4 * * * | 0 0 0 1 0 1 0 ...oo4...oo&#x | 0 0 0 1 1 | * * * * * * * * 8 * * | 0 0 0 0 1 1 0 ....x ..... | 0 0 0 0 2 | * * * * * * * * * 4 * | 0 0 0 0 1 0 1 ..... ....x | 0 0 0 0 2 | * * * * * * * * * * 4 | 0 0 0 0 0 1 1 ----------------+-----------+-----------------------+-------------- x....4x.... | 8 0 0 0 0 | 4 4 0 0 0 0 0 0 0 0 0 | 1 * * * * * * xux.. .....&#xt | 2 2 2 0 0 | 1 0 2 0 2 1 0 0 0 0 0 | * 4 * * * * * {6} ..... xx...&#x | 2 2 0 0 0 | 0 1 2 1 0 0 0 0 0 0 0 | * * 4 * * * * ..... .xwx.&#xt | 0 2 2 2 0 | 0 0 0 1 2 0 2 1 0 0 0 | * * * 4 * * * {(h,H,H)2} ..xux .....&#xt | 0 0 2 2 2 | 0 0 0 0 0 1 2 0 2 1 0 | * * * * 4 * * {6} ..... ...xx&#x | 0 0 0 2 2 | 0 0 0 0 0 0 0 1 2 0 1 | * * * * * 4 * ....x4....x | 0 0 0 0 8 | 0 0 0 0 0 0 0 0 0 4 4 | * * * * * * 1
or o....4o.... & | 16 * * | 1 1 1 0 0 0 | 1 1 1 0 [4,6,8] .o...4.o... & | * 16 * | 0 0 1 1 1 0 | 0 1 1 1 [4,6,H] ..o..4..o.. | * * 8 | 0 0 0 0 2 1 | 0 2 0 1 [h,6,6] ------------------+---------+---------------+-------- x.... ..... & | 2 0 0 | 8 * * * * * | 1 1 0 0 ..... x.... & | 2 0 0 | * 8 * * * * | 1 0 1 0 oo...4oo...&#x & | 1 1 0 | * * 16 * * * | 0 1 1 0 ..... .x... & | 0 2 0 | * * * 8 * * | 0 0 1 1 .oo..4.oo..&#x & | 0 1 1 | * * * * 16 * | 0 1 0 1 ..x.. ..... | 0 0 2 | * * * * * 4 | 0 2 0 0 ------------------+---------+---------------+-------- x....4x.... & | 8 0 0 | 4 4 0 0 0 0 | 2 * * * xux.. .....&#xt & | 2 2 2 | 1 0 2 0 2 1 | * 8 * * {6} ..... xx...&#x & | 2 2 0 | 0 1 2 1 0 0 | * * 8 * ..... .xwx.&#xt | 0 4 2 | 0 0 0 2 4 0 | * * * 4 {(h,H,H)2}
Qqo xux4xxw&#zx → heights = 0, where Q = 2q = 2.828427 o.. o..4o.. | 16 * * | 1 1 1 0 0 0 | 1 1 1 0 [4,6,8] .o. .o.4.o. | * 16 * | 0 0 1 1 1 0 | 0 1 1 1 [4,6,H] ..o..4..o.. | * * 8 | 0 0 0 0 2 1 | 0 2 0 1 [h,6,6] ----------------+---------+---------------+-------- ... x.. ... | 2 0 0 | 8 * * * * * | 1 1 0 0 ... ... x.. | 2 0 0 | * 8 * * * * | 1 0 1 0 oo. oo.4oo.&#x | 1 1 0 | * * 16 * * * | 0 1 1 0 ... ... .x. | 0 2 0 | * * * 8 * * | 0 0 1 1 .oo .oo4.oo&#x | 0 1 1 | * * * * 16 * | 0 1 0 1 ... ..x ... | 0 0 2 | * * * * * 4 | 0 2 0 0 ----------------+---------+---------------+-------- ... x..4x.. | 8 0 0 | 4 4 0 0 0 0 | 2 * * * ... xux ...&#xt | 2 2 2 | 1 0 2 0 2 1 | * 8 * * {6} ... ... xx.&#x | 2 2 0 | 0 1 2 1 0 0 | * * 8 * .qo ... .xw&#zx | 0 4 2 | 0 0 0 2 4 0 | * * * 4 {(h,H,H)2}
© 2004-2024 | top of page |