| Acronym | pac girco |
| Name | partially (mono-)contracted great rhombicuboctahedron |
| VRML |
|
| Circumradius | ... |
| Vertex figure | [4,6,8], [4,6,H], [h,6,6] |
|
Lace city in approx. ASCII-art |
o q q o
o Q Q o
q Q Q q (Q=2q)
q Q Q q
o Q Q o
o q q o
|
x w w x x W W x (W=u+w) w W W w x W W x x w w x | |
|
Dihedral angles
(at margins) |
|
| Face vector | 40, 60, 22 |
| Confer |
|
The non-regular hexagons {(h,H,H)2} are diagonally elongated squares. Its vertex angles are h = 90° resp. H = 135°.
Incidence matrix according to Dynkin symbol
xuxux4xxwxx&#xt → all heights = 1/sqrt(2) = 0.707107
({8} || pseudo (u,x)-{8} || pseudo (x,w)-{8} || pseudo (u,x)-{8} || {8})
o....4o.... | 8 * * * * | 1 1 1 0 0 0 0 0 0 0 0 | 1 1 1 0 0 0 0 [4,6,8]
.o...4.o... | * 8 * * * | 0 0 1 1 1 0 0 0 0 0 0 | 0 1 1 1 0 0 0 [4,6,H]
..o..4..o.. | * * 8 * * | 0 0 0 0 1 1 1 0 0 0 0 | 0 1 0 1 1 0 0 [h,6,6]
...o.4...o. | * * * 8 * | 0 0 0 0 0 0 1 1 1 0 0 | 0 0 0 1 1 1 0 [4,6,H]
....o4....o | * * * * 8 | 0 0 0 0 0 0 0 0 1 1 1 | 0 0 0 0 1 1 1 [4,6,8]
----------------+-----------+-----------------------+--------------
x.... ..... | 2 0 0 0 0 | 4 * * * * * * * * * * | 1 1 0 0 0 0 0
..... x.... | 2 0 0 0 0 | * 4 * * * * * * * * * | 1 0 1 0 0 0 0
oo...4oo...&#x | 1 1 0 0 0 | * * 8 * * * * * * * * | 0 1 1 0 0 0 0
..... .x... | 0 2 0 0 0 | * * * 4 * * * * * * * | 0 0 1 1 0 0 0
.oo..4.oo..&#x | 0 1 1 0 0 | * * * * 8 * * * * * * | 0 1 0 1 0 0 0
..x.. ..... | 0 0 2 0 0 | * * * * * 4 * * * * * | 0 1 0 0 1 0 0
..oo.4..oo.&#x | 0 0 1 1 0 | * * * * * * 8 * * * * | 0 0 0 1 1 0 0
..... ...x. | 0 0 0 2 0 | * * * * * * * 4 * * * | 0 0 0 1 0 1 0
...oo4...oo&#x | 0 0 0 1 1 | * * * * * * * * 8 * * | 0 0 0 0 1 1 0
....x ..... | 0 0 0 0 2 | * * * * * * * * * 4 * | 0 0 0 0 1 0 1
..... ....x | 0 0 0 0 2 | * * * * * * * * * * 4 | 0 0 0 0 0 1 1
----------------+-----------+-----------------------+--------------
x....4x.... | 8 0 0 0 0 | 4 4 0 0 0 0 0 0 0 0 0 | 1 * * * * * *
xux.. .....&#xt | 2 2 2 0 0 | 1 0 2 0 2 1 0 0 0 0 0 | * 4 * * * * * {6}
..... xx...&#x | 2 2 0 0 0 | 0 1 2 1 0 0 0 0 0 0 0 | * * 4 * * * *
..... .xwx.&#xt | 0 2 2 2 0 | 0 0 0 1 2 0 2 1 0 0 0 | * * * 4 * * * {(h,H,H)2}
..xux .....&#xt | 0 0 2 2 2 | 0 0 0 0 0 1 2 0 2 1 0 | * * * * 4 * * {6}
..... ...xx&#x | 0 0 0 2 2 | 0 0 0 0 0 0 0 1 2 0 1 | * * * * * 4 *
....x4....x | 0 0 0 0 8 | 0 0 0 0 0 0 0 0 0 4 4 | * * * * * * 1
or
o....4o.... & | 16 * * | 1 1 1 0 0 0 | 1 1 1 0 [4,6,8]
.o...4.o... & | * 16 * | 0 0 1 1 1 0 | 0 1 1 1 [4,6,H]
..o..4..o.. | * * 8 | 0 0 0 0 2 1 | 0 2 0 1 [h,6,6]
------------------+---------+---------------+--------
x.... ..... & | 2 0 0 | 8 * * * * * | 1 1 0 0
..... x.... & | 2 0 0 | * 8 * * * * | 1 0 1 0
oo...4oo...&#x & | 1 1 0 | * * 16 * * * | 0 1 1 0
..... .x... & | 0 2 0 | * * * 8 * * | 0 0 1 1
.oo..4.oo..&#x & | 0 1 1 | * * * * 16 * | 0 1 0 1
..x.. ..... | 0 0 2 | * * * * * 4 | 0 2 0 0
------------------+---------+---------------+--------
x....4x.... & | 8 0 0 | 4 4 0 0 0 0 | 2 * * *
xux.. .....&#xt & | 2 2 2 | 1 0 2 0 2 1 | * 8 * * {6}
..... xx...&#x & | 2 2 0 | 0 1 2 1 0 0 | * * 8 *
..... .xwx.&#xt | 0 4 2 | 0 0 0 2 4 0 | * * * 4 {(h,H,H)2}
Qqo xux4xxw&#zx → heights = 0, where Q = 2q = 2.828427
o.. o..4o.. | 16 * * | 1 1 1 0 0 0 | 1 1 1 0 [4,6,8]
.o. .o.4.o. | * 16 * | 0 0 1 1 1 0 | 0 1 1 1 [4,6,H]
..o..4..o.. | * * 8 | 0 0 0 0 2 1 | 0 2 0 1 [h,6,6]
----------------+---------+---------------+--------
... x.. ... | 2 0 0 | 8 * * * * * | 1 1 0 0
... ... x.. | 2 0 0 | * 8 * * * * | 1 0 1 0
oo. oo.4oo.&#x | 1 1 0 | * * 16 * * * | 0 1 1 0
... ... .x. | 0 2 0 | * * * 8 * * | 0 0 1 1
.oo .oo4.oo&#x | 0 1 1 | * * * * 16 * | 0 1 0 1
... ..x ... | 0 0 2 | * * * * * 4 | 0 2 0 0
----------------+---------+---------------+--------
... x..4x.. | 8 0 0 | 4 4 0 0 0 0 | 2 * * *
... xux ...&#xt | 2 2 2 | 1 0 2 0 2 1 | * 8 * * {6}
... ... xx.&#x | 2 2 0 | 0 1 2 1 0 0 | * * 8 *
.qo ... .xw&#zx | 0 4 2 | 0 0 0 2 4 0 | * * * 4 {(h,H,H)2}
© 2004-2025 | top of page |