Acronym pabac scant
Name partially bicontracted small cellated penteractitriacontiditeron
Circumradius ...
Lace city
in approx. ASCII-art
       line     line        		-- square
                            
                            
                            
line  esquidpy esquidpy line		-- quawros
                            
                            
                            
                            
                            
line  esquidpy esquidpy line		-- quawros
                            
                            
                            
       line     line        		-- square
       square        	-- square
                   
                   
                   
square squobcu square	-- quawros
                   
                   
                   
                   
                   
square squobcu square	-- quawros
                   
                   
                   
       square        	-- square

  |      |      +-- cube
  |      +--------- pacsid pith
  +---------------- cube
       o3o4x       		-- cube
                   
                   
                   
o3o4x  x3o4x  o3o4x		-- pacsid pith
                   
                   
                   
       o3o4x       		-- cube
Coordinates
  • (0, 0; 1/2, 1/2, (1+sqrt(2))/2)   & all permutations within last 3 coords, all changes of sign
  • (1/sqrt(2), 0; 1/2, 1/2, 1/2)       & all permutations within each coords subset, all changes of sign
Face vector 56, 224, 386, 324, 108
Confer
uniform relative:
tac   scant  
general polytopal classes:
partial Stott expansions  

This CRF polyteron can be obtained from tac by partial Stott expanding only within 3 orthogonal axial directions, perpendicular to an equatorial square cross-section. Conversely it could be obtained from scant by partial Stott contracting only within 2 orthogonal axial directions.


Incidence matrix according to Dynkin symbol

xo4oo ox3oo4xx&#zx   → height = 0

o.4o. o.3o.4o.    | 32  * |  2  3  3  0  0 |  6  3  6  3  6 0  0 0 |  6 1  6 12  1  3  3 | 2  2  6  6
.o4.o .o3.o4.o    |  * 24 |  0  0  4  2  2 |  0  0  4  8  8 1  2 1 |  0 0  8  8  4  8  4 | 0  4  8  4
------------------+-------+----------------+-----------------------+---------------------+-----------
x. .. .. .. ..    |  2  0 | 32  *  *  *  * |  3  0  3  0  0 0  0 0 |  3 0  3  6  0  0  0 | 1  1  3  3
.. .. .. .. x.    |  2  0 |  * 48  *  *  * |  2  2  0  0  2 0  0 0 |  4 1  0  4  0  1  2 | 2  0  2  4
oo4oo oo3oo4oo&#x |  1  1 |  *  * 96  *  * |  0  0  2  2  2 0  0 0 |  0 0  4  4  1  2  1 | 0  2  4  2
.. .. .x .. ..    |  0  2 |  *  *  * 24  * |  0  0  0  4  0 1  1 0 |  0 0  4  0  4  4  0 | 0  4  4  0
.. .. .. .. .x    |  0  2 |  *  *  *  * 24 |  0  0  0  0  4 0  1 1 |  0 0  0  4  0  4  4 | 0  0  4  4
------------------+-------+----------------+-----------------------+---------------------+-----------
x. .. .. .. x.    |  4  0 |  2  2  0  0  0 | 48  *  *  *  * *  * * |  2 0  0  2  0  0  0 | 1  0  1  2
.. .. .. o.4x.    |  4  0 |  0  4  0  0  0 |  * 24  *  *  * *  * * |  2 1  0  0  0  0  1 | 2  0  0  2
xo .. .. .. ..&#x |  2  1 |  1  0  2  0  0 |  *  * 96  *  * *  * * |  0 0  2  2  0  0  0 | 0  1  2  1
.. .. ox .. ..&#x |  1  2 |  0  0  2  1  0 |  *  *  * 96  * *  * * |  0 0  2  0  1  1  0 | 0  2  2  0
.. .. .. .. xx&#x |  2  2 |  0  1  2  0  1 |  *  *  *  * 96 *  * * |  0 0  0  2  0  1  1 | 0  0  2  2
.. .. .x3.o ..    |  0  3 |  0  0  0  3  0 |  *  *  *  *  * 8  * * |  0 0  0  0  4  0  0 | 0  4  0  0
.. .. .x .. .x    |  0  4 |  0  0  0  2  2 |  *  *  *  *  * * 12 * |  0 0  0  0  0  4  0 | 0  0  4  0
.. .. .. .o4.x    |  0  4 |  0  0  0  0  4 |  *  *  *  *  * *  * 6 |  0 0  0  0  0  0  4 | 0  0  0  4
------------------+-------+----------------+-----------------------+---------------------+-----------
x. .. .. o.4x.      8  0 |  4  8  0  0  0 |  4  2  0  0  0 0  0 0 | 24 *  *  *  *  *  * | 1  0  0  1
.. .. o.3o.4x.      8  0 |  0 12  0  0  0 |  0  6  0  0  0 0  0 0 |  * 4  *  *  *  *  * | 2  0  0  0
xo .. ox .. ..&#x   2  2 |  1  0  4  1  0 |  0  0  2  2  0 0  0 0 |  * * 96  *  *  *  * | 0  1  1  0
xo .. .. .. xx&#x   4  2 |  2  2  4  0  1 |  1  0  2  0  2 0  0 0 |  * *  * 96  *  *  * | 0  0  1  1
.. .. ox3oo ..&#x   1  3 |  0  0  3  3  0 |  0  0  0  3  0 1  0 0 |  * *  *  * 32  *  * | 0  2  0  0
.. .. ox .. xx&#x   2  4 |  0  1  4  2  2 |  0  0  0  2  2 0  1 0 |  * *  *  *  * 48  * | 0  0  2  0
.. .. .. oo4xx&#x   4  4 |  0  4  4  0  4 |  0  1  0  0  4 0  0 1 |  * *  *  *  *  * 24 | 0  0  0  2
------------------+-------+----------------+-----------------------+---------------------+-----------
x. .. o.3o.4x.     16  0 |  8 24  0  0  0 | 12 12  0  0  0 0  0 0 |  6 2  0  0  0  0  0 | 4  *  *  *
xo .. ox3oo ..&#x   2  3 |  1  0  6  3  0 |  0  0  3  6  0 1  0 0 |  0 0  3  0  2  0  0 | * 32  *  *
xo .. ox .. xx&#x   4  4 |  2  2  8  2  2 |  1  0  4  4  4 0  1 0 |  0 0  2  2  0  2  0 | *  * 48  *
xo .. .. oo4xx&#x   8  4 |  4  8  8  0  4 |  4  2  4  0  8 0  0 1 |  1 0  0  4  0  0  2 | *  *  * 24

© 2004-2024
top of page