Acronym | ..., ico || sadi |
Name | ico atop sadi |
Circumradius | ∞ i.e. flat in euclidean space |
Coordinates | where τ = (1+sqrt(5))/2 |
Face vector | 120, 816, 1584, 1128, 242 |
Confer |
|
It either can be thought of as a degenerate 5D segmentotope with zero height, or as a 4D euclidean decomposition of the larger base into smaller bits.
Incidence matrix according to Dynkin symbol
os3os4oo3xo&#x → height = 0
(ico || sadi)
o.3o.4o.3o. | 24 * | 8 12 0 0 | 12 24 6 24 0 0 0 | 6 12 8 12 24 12 0 0 0 | 1 1 8 6 0 12
demi( .o3.o4.o3.o ) | * 96 | 0 3 3 6 | 0 3 3 12 3 9 3 | 0 1 6 9 6 3 3 1 4 | 0 3 3 1 1 4
-----------------------+-------+----------------+--------------------------+-------------------------------+----------------
.. .. .. x. | 2 0 | 96 * * * | 3 3 0 0 0 0 0 | 3 3 0 0 3 3 0 0 0 | 1 0 1 3 0 3
demi( oo3oo4oo3oo&#x ) | 1 1 | * 288 * * | 0 2 1 4 0 0 0 | 0 1 2 3 4 2 0 0 0 | 0 1 2 1 0 3
.. .s4.o .. | 0 2 | * * 144 * | 0 0 1 0 0 2 2 | 0 0 0 2 0 2 1 1 2 | 0 1 0 1 1 2
sefa( .s3.s .. .. ) | 0 2 | * * * 288 | 0 0 0 2 1 2 0 | 0 0 2 2 1 0 2 0 1 | 0 2 1 0 1 1
-----------------------+-------+----------------+--------------------------+-------------------------------+----------------
.. .. o.3x. | 3 0 | 3 0 0 0 | 96 * * * * * * | 2 1 0 0 0 1 0 0 0 | 1 0 0 2 0 1
demi( .. .. .. xo&#x ) | 2 1 | 1 2 0 0 | * 288 * * * * * | 0 1 0 0 2 1 0 0 0 | 0 0 1 1 0 2
.. os4oo ..&#x | 1 2 | 0 2 1 0 | * * 144 * * * * | 0 0 0 2 0 2 0 0 0 | 0 1 0 1 0 2
sefa( os3os .. ..&#x ) | 1 2 | 0 2 0 1 | * * * 576 * * * | 0 0 1 1 1 0 0 0 0 | 0 1 1 0 0 1
.s3.s .. .. | 0 3 | 0 0 0 3 | * * * * 96 * * | 0 0 2 0 0 0 2 0 0 | 0 2 1 0 1 0
sefa( .s3.s4.o .. ) | 0 3 | 0 0 1 2 | * * * * * 288 * | 0 0 0 1 0 0 1 0 1 | 0 1 0 0 1 1
sefa( .. .s4.o3.o ) | 0 3 | 0 0 3 0 | * * * * * * 96 | 0 0 0 0 0 1 0 1 1 | 0 0 0 1 1 1
-----------------------+-------+----------------+--------------------------+-------------------------------+----------------
.. o.4o.3x. ♦ 6 0 | 12 0 0 0 | 8 0 0 0 0 0 0 | 24 * * * * * * * * | 1 0 0 1 0 0
demi( .. .. oo3xo&#x ) ♦ 3 1 | 3 3 0 0 | 1 3 0 0 0 0 0 | * 96 * * * * * * * | 0 0 0 1 0 1
os3os .. ..&#x ♦ 1 3 | 0 3 0 3 | 0 0 0 3 1 0 0 | * * 192 * * * * * * | 0 1 1 0 0 0
sefa( os3os4oo ..&#x ) ♦ 1 3 | 0 3 1 2 | 0 0 1 2 0 1 0 | * * * 288 * * * * * | 0 1 0 0 0 1
sefa( os3os .2 xo&#x ) ♦ 2 2 | 1 4 0 1 | 0 2 0 2 0 0 0 | * * * * 288 * * * * | 0 0 1 0 0 1
sefa( .. os4oo3xo&#x ) ♦ 3 3 | 3 6 3 0 | 1 3 3 0 0 0 1 | * * * * * 96 * * * | 0 0 0 1 0 1
.s3.s4.o .. ♦ 0 12 | 0 0 6 24 | 0 0 0 0 8 12 0 | * * * * * * 24 * * | 0 1 0 0 1 0
.. .s4.o3.o ♦ 0 4 | 0 0 6 0 | 0 0 0 0 0 0 4 | * * * * * * * 24 * | 0 0 0 1 1 0
sefa( .s3.s4.o3.o ) ♦ 0 4 | 0 0 3 3 | 0 0 0 0 0 3 1 | * * * * * * * * 96 | 0 0 0 0 1 1
-----------------------+-------+----------------+--------------------------+-------------------------------+----------------
o.3o.4o.3x. ♦ 24 0 | 96 0 0 0 | 96 0 0 0 0 0 0 | 24 0 0 0 0 0 0 0 0 | 1 * * * * *
os3os4oo ..&#x ♦ 1 12 | 0 12 6 24 | 0 0 6 24 8 12 0 | 0 0 8 12 0 0 1 0 0 | * 24 * * * *
os3os .2 xo&#x ♦ 2 3 | 1 6 0 3 | 0 3 0 6 1 0 0 | 0 0 2 0 3 0 0 0 0 | * * 96 * * *
.. os4oo3xo&#x ♦ 6 4 | 12 12 6 0 | 8 12 6 0 0 0 4 | 1 4 0 0 0 4 0 1 0 | * * * 24 * *
.s3.s4.o3.o ♦ 0 96 | 0 0 144 288 | 0 0 0 0 96 288 96 | 0 0 0 0 0 0 24 24 96 | * * * * 1 *
sefa( os3os4oo3xo&#x ) ♦ 3 4 | 3 9 3 3 | 1 6 3 6 0 3 1 | 0 1 0 3 3 1 0 0 1 | * * * * * 96
starting figure: ox3ox4oo3xo&#x (which as a throughout unit-edged figure could be realized within hyperbolic space only)
© 2004-2025 | top of page |