Acronym | ..., tes || sadi |
Name | tes atop sadi |
Circumradius | ∞ i.e. flat in euclidean space |
Coordinates | where τ = (1+sqrt(5))/2 |
Face vector | 112, 656, 1176, 808, 178 |
Confer |
|
It either can be thought of as a degenerate 5D segmentotope with zero height, or as a 4D euclidean decomposition of the larger base into smaller bits.
Incidence matrix according to Dynkin symbol
os3os3os4xo&#x → height = 0
(tes || sadi)
o.3o.3o.4o. | 16 * | 4 12 0 0 0 0 | 6 12 6 12 12 12 0 0 0 0 0 | 4 4 4 12 12 12 12 12 0 0 0 0 | 1 1 4 6 4 0 12
demi( .o3.o3.o4.o ) | * 96 | 0 2 2 1 2 4 | 0 1 2 4 4 2 1 2 6 3 3 | 0 2 2 1 6 2 3 3 2 1 1 4 | 0 2 1 1 1 1 4
-----------------------+-------+---------------------+-------------------------------------+------------------------------------+------------------
.. .. .. x. | 2 0 | 32 * * * * * | 3 3 0 0 0 3 0 0 0 0 0 | 3 0 0 6 0 3 3 3 0 0 0 0 | 1 0 1 3 3 0 3
demi( oo3oo3oo4oo&#x ) | 1 1 | * 192 * * * * | 0 1 1 2 2 1 0 0 0 0 0 | 0 1 1 1 3 2 2 2 0 0 0 0 | 0 1 1 1 1 0 3
.s .2 .s .. | 0 2 | * * 96 * * * | 0 0 1 0 0 0 0 0 2 2 0 | 0 0 0 0 2 0 2 0 1 1 0 2 | 0 1 0 1 0 1 2
.. .. .s4.o | 0 2 | * * * 48 * * | 0 0 0 0 0 2 0 0 0 2 2 | 0 0 0 1 0 0 2 2 0 1 1 2 | 0 0 0 1 1 1 2
sefa( .s3.s .. .. ) | 0 2 | * * * * 96 * | 0 0 0 2 0 0 1 0 2 0 0 | 0 2 0 0 2 1 0 0 2 0 0 1 | 0 2 1 0 0 1 1
sefa( .. .s3.s .. ) | 0 2 | * * * * * 192 | 0 0 0 0 1 0 0 1 1 0 1 | 0 0 1 0 1 0 0 1 1 0 1 1 | 0 1 0 0 1 1 1
-----------------------+-------+---------------------+-------------------------------------+------------------------------------+------------------
.. .. o.4x. | 4 0 | 4 0 0 0 0 0 | 24 * * * * * * * * * * | 2 0 0 2 0 0 0 0 0 0 0 0 | 1 0 0 1 2 0 0
demi( .. .. .. xo&#x ) | 2 1 | 1 2 0 0 0 0 | * 96 * * * * * * * * * | 0 0 0 1 0 2 1 1 0 0 0 0 | 0 0 1 1 1 0 2
os .2 os ..&#x | 1 2 | 0 2 1 0 0 0 | * * 96 * * * * * * * * | 0 0 0 0 2 0 2 0 0 0 0 0 | 0 1 0 1 0 0 2
sefa( os3os .. ..&#x ) | 1 2 | 0 2 0 0 1 0 | * * * 192 * * * * * * * | 0 1 0 0 1 1 0 0 0 0 0 0 | 0 1 1 0 0 0 1
sefa( .. os3os ..&#x ) | 1 2 | 0 2 0 0 0 1 | * * * * 192 * * * * * * | 0 0 1 0 1 0 0 1 0 0 0 0 | 0 1 0 0 1 0 1
sefa( .. .. os4xo&#x ) | 2 2 | 1 2 0 1 0 0 | * * * * * 96 * * * * * | 0 0 0 1 0 0 1 1 0 0 0 0 | 0 0 0 1 1 0 1
.s3.s .. .. | 0 3 | 0 0 0 0 3 0 | * * * * * * 32 * * * * | 0 2 0 0 0 0 0 0 2 0 0 0 | 0 2 1 0 0 1 0
.. .s3.s .. | 0 3 | 0 0 0 0 0 3 | * * * * * * * 64 * * * | 0 0 1 0 0 0 0 0 1 0 1 0 | 0 1 0 0 1 1 0
sefa( .s3.s3.s .. ) | 0 3 | 0 0 1 0 1 1 | * * * * * * * * 192 * * | 0 0 0 0 1 0 0 0 1 0 0 1 | 0 1 0 0 0 1 1
sefa( .s .2 .s4.o ) | 0 3 | 0 0 2 1 0 0 | * * * * * * * * * 96 * | 0 0 0 0 0 0 1 0 0 1 0 1 | 0 0 0 1 0 1 1
sefa( .. .s3.s4.o ) | 0 3 | 0 0 0 1 0 2 | * * * * * * * * * * 96 | 0 0 0 0 0 0 0 1 0 0 1 1 | 0 0 0 0 1 1 1
-----------------------+-------+---------------------+-------------------------------------+------------------------------------+------------------
.. o.3o.4x. ♦ 8 0 | 12 0 0 0 0 0 | 6 0 0 0 0 0 0 0 0 0 0 | 8 * * * * * * * * * * * | 1 0 0 0 1 0 0
os3os .. ..&#x ♦ 1 3 | 0 3 0 0 3 0 | 0 0 0 3 0 0 1 0 0 0 0 | * 64 * * * * * * * * * * | 0 1 1 0 0 0 0
.. os3os ..&#x ♦ 1 3 | 0 3 0 0 0 3 | 0 0 0 0 3 0 0 1 0 0 0 | * * 64 * * * * * * * * * | 0 1 0 0 1 0 0
.. .. os4xo&#x ♦ 4 2 | 4 4 0 1 0 0 | 1 2 0 0 0 2 0 0 0 0 0 | * * * 48 * * * * * * * * | 0 0 0 1 1 0 0
sefa( os3os3os ..&#x ) ♦ 1 3 | 0 3 1 0 1 1 | 0 0 1 1 1 0 0 0 1 0 0 | * * * * 192 * * * * * * * | 0 1 0 0 0 0 1
sefa( os3os .2 xo&#x ) ♦ 2 2 | 1 4 0 0 1 0 | 0 2 0 2 0 0 0 0 0 0 0 | * * * * * 96 * * * * * * | 0 0 1 0 0 0 1
sefa( os .2 os4xo&#x ) ♦ 2 3 | 1 4 2 1 0 0 | 0 1 2 0 0 1 0 0 0 1 0 | * * * * * * 96 * * * * * | 0 0 0 1 0 0 1
sefa( .. os3os4xo&#x ) ♦ 2 3 | 1 4 0 1 0 2 | 0 1 0 0 2 1 0 0 0 0 1 | * * * * * * * 96 * * * * | 0 0 0 0 1 0 1
.s3.s3.s .. ♦ 0 12 | 0 0 6 0 12 12 | 0 0 0 0 0 0 4 4 12 0 0 | * * * * * * * * 16 * * * | 0 1 0 0 0 1 0
.s .2 .s4.o ♦ 0 4 | 0 0 4 2 0 0 | 0 0 0 0 0 0 0 0 0 4 0 | * * * * * * * * * 24 * * | 0 0 0 1 0 1 0
.. .s3.s4.o ♦ 0 12 | 0 0 0 6 0 24 | 0 0 0 0 0 0 0 8 0 0 12 | * * * * * * * * * * 8 * | 0 0 0 0 1 1 0
sefa( .s3.s3.s4.o ) ♦ 0 4 | 0 0 2 1 1 2 | 0 0 0 0 0 0 0 0 2 1 1 | * * * * * * * * * * * 96 | 0 0 0 0 0 1 1
-----------------------+-------+---------------------+-------------------------------------+------------------------------------+------------------
o.3o.3o.4x. ♦ 16 0 | 32 0 0 0 0 0 | 24 0 0 0 0 0 0 0 0 0 0 | 8 0 0 0 0 0 0 0 0 0 0 0 | 1 * * * * * *
os3os3os ..&#x ♦ 1 12 | 0 12 6 0 12 12 | 0 0 6 12 12 0 4 4 12 0 0 | 0 4 4 0 12 0 0 0 1 0 0 0 | * 16 * * * * *
os3os .2 xo&#x ♦ 2 3 | 1 6 0 0 3 0 | 0 3 0 6 0 0 1 0 0 0 0 | 0 2 0 0 0 3 0 0 0 0 0 0 | * * 32 * * * *
os .2 os4xo&#x ♦ 4 4 | 4 8 4 2 0 0 | 1 4 4 0 0 4 0 0 0 4 0 | 0 0 0 2 0 0 4 0 0 1 0 0 | * * * 24 * * *
.. os3os4xo&#x ♦ 8 12 | 12 24 0 6 0 24 | 6 12 0 0 24 12 0 8 0 0 12 | 1 0 8 6 0 0 0 12 0 0 1 0 | * * * * 8 * *
.s3.s3.s4.o ♦ 0 96 | 0 0 96 48 96 192 | 0 0 0 0 0 0 32 64 192 96 96 | 0 0 0 0 0 0 0 0 16 24 8 96 | * * * * * 1 *
sefa( os3os3os4xo&#x ) ♦ 2 4 | 1 6 2 1 1 2 | 0 2 2 2 2 1 0 0 2 1 1 | 0 0 0 0 2 1 1 1 0 0 0 1 | * * * * * * 96
starting figure: ox3ox3ox4xo&#x (which as a throughout unit-edged figure could be realized within hyperbolic space only)
© 2004-2025 | top of page |