Acronym hextes Name hexadecachoron-tesseract duoprism Circumradius sqrt(3/2) = 1.224745 Volume 1/6 = 0.166667

This polyzetton is a hemiation of octo, just as hocto. But this hemiation here is wrt. the first 4 coordinates only, while that of hocto is wrt. all 8 coordinates. – None the same this alternation here, when applied to octo, would produce different edge sizes, which, as shown below, can still be overcome. Therefore that relation to octo is just a combinatorical one, not a metrical one, in contrast to the case for hocto.

Incidence matrix according to Dynkin symbol

```x3o3o4o o3o3o4x

o3o3o4o o3o3o4o | 128 |   6   4 |  12  24   6 |   8   48  36 16 |  1  32  72  24 1 |  4  48  48  6 |  6  32 12 | 4  8
----------------+-----+---------+-------------+-----------------+------------------+---------------+-----------+-----
x . . . . . . . |   2 | 384   * |   4   4   0 |   4   16   6  0 |  1  16  24  16 0 |  4  24  16  1 |  6  16  4 | 4  4
. . . . . . . x |   2 |   * 256 |   0   6   3 |   0   12  18  3 |  0   8  36  18 1 |  1  24  36  4 |  3  24 12 | 3  8
----------------+-----+---------+-------------+-----------------+------------------+---------------+-----------+-----
x3o . . . . . . |   3 |   3   0 | 512   *   * |   2    4   0  0 |  1   8   6   0 0 |  4  12   4  0 |  6   8  1 | 4  2
x . . . . . . x |   4 |   2   2 |   * 768   * |   0    4   3  0 |  0   4  12   3 0 |  1  12  12  1 |  3  12  4 | 3  4
. . . . . . o4x |   4 |   0   4 |   *   * 192 |   0    0   6  2 |  0   0  12  12 1 |  0   8  16  6 |  1  16 12 | 2  8
----------------+-----+---------+-------------+-----------------+------------------+---------------+-----------+-----
x3o3o . . . . . ♦   4 |   6   0 |   4   0   0 | 256    *   *  * |  1   4   0   0 0 |  4   6   0  0 |  6   4  0 | 4  1
x3o . . . . . x ♦   6 |   6   3 |   2   3   0 |   * 1024   *  * |  0   2   3   0 0 |  1   6   3  0 |  3   6  1 | 3  2
x . . . . . o4x ♦   8 |   4   8 |   0   4   2 |   *    * 576  * |  0   0   4   2 0 |  0   4   8  1 |  1   8  4 | 2  4
. . . . . o3o4x ♦   8 |   0  12 |   0   0   6 |   *    *   * 64 |  0   0   0   6 1 |  0   0  12  6 |  0   8 12 | 1  8
----------------+-----+---------+-------------+-----------------+------------------+---------------+-----------+-----
x3o3o4o . . . . ♦   8 |  24   0 |  32   0   0 |  16    0   0  0 | 16   *   *   * * ♦  4   0   0  0 |  6   0  0 | 4  0
x3o3o . . . . x ♦   8 |  12   4 |   8   6   0 |   2    4   0  0 |  * 512   *   * * |  1   3   0  0 |  3   3  0 | 3  1
x3o . . . . o4x ♦  12 |  12  12 |   4  12   3 |   0    4   3  0 |  *   * 768   * * |  0   2   2  0 |  1   4  1 | 2  2
x . . . . o3o4x ♦  16 |   8  24 |   0  12  12 |   0    0   6  2 |  *   *   * 192 * |  0   0   4  1 |  0   4  4 | 1  4
. . . . o3o3o4x ♦  16 |   0  32 |   0   0  24 |   0    0   0  8 |  *   *   *   * 8 ♦  0   0   0  6 |  0   0 12 | 0  8
----------------+-----+---------+-------------+-----------------+------------------+---------------+-----------+-----
x3o3o4o . . . x ♦  16 |  48   8 |  64  24   0 |  32   32   0  0 |  2  16   0   0 0 | 32   *   *  * |  3   0  0 | 3  0
x3o3o . . . o4x ♦  16 |  24  16 |  16  24   4 |   4   16   6  0 |  0   4   4   0 0 |  * 384   *  * |  1   2  0 | 2  1
x3o . . . o3o4x ♦  24 |  24  36 |   8  36  18 |   0   12  18  3 |  0   0   6   3 0 |  *   * 256  * |  0   2  1 | 1  2
x . . . o3o3o4x ♦  32 |  16  64 |   0  32  48 |   0    0  24 16 |  0   0   0   8 2 |  *   *   * 24 |  0   0  4 | 0  4
----------------+-----+---------+-------------+-----------------+------------------+---------------+-----------+-----
x3o3o4o . . o4x ♦  32 |  96  32 | 128  96   8 |  64  128  24  0 |  4  64  32   0 0 |  4  16   0  0 | 24   *  * | 2  0
x3o3o . . o3o4x ♦  32 |  48  48 |  32  72  24 |   8   48  36  4 |  0  12  24   6 0 |  0   6   4  0 |  * 128  * | 1  1
x3o . . o3o3o4x ♦  48 |  48  96 |  16  96  72 |   0   32  72 24 |  0   0  24  24 3 |  0   0   8  3 |  *   * 32 | 0  2
----------------+-----+---------+-------------+-----------------+------------------+---------------+-----------+-----
x3o3o4o . o3o4x ♦  64 | 192  96 | 256 288  48 | 128  384 144  8 |  8 192 192  24 0 | 12  96  32  0 |  6  16  0 | 8  *
x3o3o . o3o3o4x ♦  64 |  96 128 |  64 192  96 |  16  128 144 32 |  0  32  96  48 4 |  0  24  32  6 |  0   8  4 | * 16
```

```o3o3o4s o3o3o4x

demi( . . . . ) . . . . | 128 |   6   4 |  12  24   6 |   4   4   48  36 16 |  1  16  16  72  24 1 |  4  24  24  48  6 |  6 16 16 12 | 4 4 4
------------------------+-----+---------+-------------+---------------------+----------------------+-------------------+-------------+------
. . o4s   . . . . |   2 | 384   * |   4   4   0 |   2   2   16   6  0 |  1   8   8  24  16 0 |  4  12  12  16  1 |  6  8  8  4 | 4 2 2
demi( . . . . ) . . . x |   2 |   * 256 |   0   6   3 |   0   0   12  18  3 |  0   4   4  36  18 1 |  1  12  12  36  4 |  3 12 12 12 | 3 4 4
------------------------+-----+---------+-------------+---------------------+----------------------+-------------------+-------------+------
sefa( . o3o4s ) . . . . |   3 |   3   0 | 512   *   * |   1   1    4   0  0 |  1   4   4   6   0 0 |  4   6   6   4  0 |  6  4  4  1 | 4 1 1
. . o4s   . . . x |   4 |   2   2 |   * 768   * |   0   0    4   3  0 |  0   2   2  12   3 0 |  1   6   6  12  1 |  3  6  6  4 | 3 2 2
demi( . . . . ) . . o4x |   4 |   0   4 |   *   * 192 |   0   0    0   6  2 |  0   0   0  12  12 1 |  0   4   4  16  6 |  1  8  8 12 | 2 4 4
------------------------+-----+---------+-------------+---------------------+----------------------+-------------------+-------------+------
. o3o4s   . . . . ♦   4 |   6   0 |   4   0   0 | 128   *    *   *  * |  1   4   0   0   0 0 |  4   6   0   0  0 |  6  4  0  0 | 4 1 0
sefa( o3o3o4s ) . . . . ♦   4 |   6   0 |   4   0   0 |   * 128    *   *  * |  1   0   4   0   0 0 |  4   0   6   0  0 |  6  0  4  0 | 4 0 1
sefa( . o3o4s ) . . . x ♦   6 |   6   3 |   2   3   0 |   *   * 1024   *  * |  0   0   2   3   0 0 |  1   3   3   3  0 |  3  3  3  1 | 3 1 1
. . o4s   . . o4x ♦   8 |   4   8 |   0   4   2 |   *   *    * 576  * |  0   0   0   4   2 0 |  0   2   2   8  1 |  1  4  4  4 | 2 2 2
demi( . . . . ) . o3o4x ♦   8 |   0  12 |   0   0   6 |   *   *    *   * 64 |  0   0   0   0   6 1 |  0   0   0  12  6 |  0  4  4 12 | 1 4 4
------------------------+-----+---------+-------------+---------------------+----------------------+-------------------+-------------+------
o3o3o4s   . . . . ♦   8 |  24   0 |  32   0   0 |   8   8    0   0  0 | 16   *   *   *   * * ♦  4   0   0   0  0 |  6  0  0  0 | 4 0 0
. o3o4s   . . . x ♦   8 |  12   4 |   8   6   0 |   2   0    4   0  0 |  * 256   *   *   * * |  1   3   0   0  0 |  3  3  0  0 | 3 1 0
sefa( o3o3o4s ) . . . x ♦   8 |  12   4 |   8   6   0 |   0   2    4   0  0 |  *   * 256   *   * * |  1   0   3   0  0 |  3  0  3  0 | 3 0 1
sefa( . o3o4s ) . . o4x ♦  12 |  12  12 |   4  12   3 |   0   0    4   3  0 |  *   *   * 768   * * |  0   1   1   2  0 |  1  2  2  1 | 2 1 1
. . o4s   . o3o4x ♦  16 |   8  24 |   0  12  12 |   0   0    0   6  2 |  *   *   *   * 192 * |  0   0   0   4  1 |  0  2  2  4 | 1 2 2
demi( . . . . ) o3o3o4x ♦  16 |   0  32 |   0   0  24 |   0   0    0   0  8 |  *   *   *   *   * 8 ♦  0   0   0   0  6 |  0  0  0 12 | 0 4 4
------------------------+-----+---------+-------------+---------------------+----------------------+-------------------+-------------+------
o3o3o4s   . . . x ♦  16 |  48   8 |  64  24   0 |  16  16   32   0  0 |  2   8   8   0   0 0 | 32   *   *   *  * |  3  0  0  0 | 3 0 0
. o3o4s   . . o4x ♦  16 |  24  16 |  16  24   4 |   4   0   16   6  0 |  0   4   0   4   0 0 |  * 192   *   *  * |  1  2  0  0 | 2 1 0
sefa( o3o3o4s ) . . o4x ♦  16 |  24  16 |  16  24   4 |   0   4   16   6  0 |  0   0   4   4   0 0 |  *   * 192   *  * |  1  0  2  0 | 2 0 1
sefa( . o3o4s ) . o3o4x ♦  24 |  24  36 |   8  36  18 |   0   0   12  18  3 |  0   0   0   6   3 0 |  *   *   * 256  * |  0  1  1  1 | 1 1 1
. . o4s   o3o3o4x ♦  32 |  16  64 |   0  32  48 |   0   0    0  24 16 |  0   0   0   0   8 2 |  *   *   *   * 24 |  0  0  0  4 | 0 2 2
------------------------+-----+---------+-------------+---------------------+----------------------+-------------------+-------------+------
o3o3o4s   . . o4x ♦  32 |  96  32 | 128  96   8 |  32  32  128  24  0 |  4  32  32  32   0 0 |  4   8   8   0  0 | 24  *  *  * | 2 0 0
. o3o4s   . o3o4x ♦  32 |  48  48 |  32  72  24 |   8   0   48  36  4 |  0  12   0  24   6 0 |  0   6   0   4  0 |  * 64  *  * | 1 1 0
sefa( o3o3o4s ) . o3o4x ♦  32 |  48  48 |  32  72  24 |   0   8   48  36  4 |  0   0  12  24   6 0 |  0   0   6   4  0 |  *  * 64  * | 1 0 1
sefa( . o3o4s ) o3o3o4x ♦  48 |  48  96 |  16  96  72 |   0   0   32  72 24 |  0   0   0  24  24 3 |  0   0   0   8  3 |  *  *  * 32 | 0 1 1
------------------------+-----+---------+-------------+---------------------+----------------------+-------------------+-------------+------
o3o3o4s   . o3o4x ♦  64 | 192  96 | 256 288  48 |  64  64  384 144  8 |  8  96  96 192  24 0 | 12  48  48  32  0 |  6  8  8  0 | 8 * *
. o3o4s   o3o3o4x ♦  64 |  96 128 |  64 192  96 |  16   0  128 144 32 |  0  32   0  96  48 4 |  0  24   0  32  6 |  0  8  0  4 | * 8 *
sefa( o3o3o4s ) o3o3o4x ♦  64 |  96 128 |  64 192  96 |   0  16  128 144 32 |  0   0  32  96  48 4 |  0   0  24  32  6 |  0  0  8  4 | * * 8

starting figure: o3o3o4x o3o3o4x
```