Acronym gocad (old: gohad) Name great cellated dodecateron(great hedrated dodecateron),omnitruncated hexateron,Voronoi cell of lattice A5* Field of sections ` ©` Circumradius sqrt(35)/2 = 2.958040 Vertex figure ` ©   ©` Confer general polytopal classes: lace simplices Externallinks

Incidence matrix according to Dynkin symbol

```x3x3x3x3x

. . . . . | 720 |   1   1   1   1   1 |   1   1   1   1   1   1   1   1   1   1 |  1  1  1  1  1  1  1  1  1  1 | 1  1  1  1 1
----------+-----+---------------------+-----------------------------------------+-------------------------------+-------------
x . . . . |   2 | 360   *   *   *   * |   1   1   1   1   0   0   0   0   0   0 |  1  1  1  1  1  1  0  0  0  0 | 1  1  1  1 0
. x . . . |   2 |   * 360   *   *   * |   1   0   0   0   1   1   1   0   0   0 |  1  1  1  0  0  0  1  1  1  0 | 1  1  1  0 1
. . x . . |   2 |   *   * 360   *   * |   0   1   0   0   1   0   0   1   1   0 |  1  0  0  1  1  0  1  1  0  1 | 1  1  0  1 1
. . . x . |   2 |   *   *   * 360   * |   0   0   1   0   0   1   0   1   0   1 |  0  1  0  1  0  1  1  0  1  1 | 1  0  1  1 1
. . . . x |   2 |   *   *   *   * 360 |   0   0   0   1   0   0   1   0   1   1 |  0  0  1  0  1  1  0  1  1  1 | 0  1  1  1 1
----------+-----+---------------------+-----------------------------------------+-------------------------------+-------------
x3x . . . |   6 |   3   3   0   0   0 | 120   *   *   *   *   *   *   *   *   * |  1  1  1  0  0  0  0  0  0  0 | 1  1  1  0 0
x . x . . |   4 |   2   0   2   0   0 |   * 180   *   *   *   *   *   *   *   * |  1  0  0  1  1  0  0  0  0  0 | 1  1  0  1 0
x . . x . |   4 |   2   0   0   2   0 |   *   * 180   *   *   *   *   *   *   * |  0  1  0  1  0  1  0  0  0  0 | 1  0  1  1 0
x . . . x |   4 |   2   0   0   0   2 |   *   *   * 180   *   *   *   *   *   * |  0  0  1  0  1  1  0  0  0  0 | 0  1  1  1 0
. x3x . . |   6 |   0   3   3   0   0 |   *   *   *   * 120   *   *   *   *   * |  1  0  0  0  0  0  1  1  0  0 | 1  1  0  0 1
. x . x . |   4 |   0   2   0   2   0 |   *   *   *   *   * 180   *   *   *   * |  0  1  0  0  0  0  1  0  1  0 | 1  0  1  0 1
. x . . x |   4 |   0   2   0   0   2 |   *   *   *   *   *   * 180   *   *   * |  0  0  1  0  0  0  0  1  1  0 | 0  1  1  0 1
. . x3x . |   6 |   0   0   3   3   0 |   *   *   *   *   *   *   * 120   *   * |  0  0  0  1  0  0  1  0  0  1 | 1  0  0  1 1
. . x . x |   4 |   0   0   2   0   2 |   *   *   *   *   *   *   *   * 180   * |  0  0  0  0  1  0  0  1  0  1 | 0  1  0  1 1
. . . x3x |   6 |   0   0   0   3   3 |   *   *   *   *   *   *   *   *   * 120 |  0  0  0  0  0  1  0  0  1  1 | 0  0  1  1 1
----------+-----+---------------------+-----------------------------------------+-------------------------------+-------------
x3x3x . . ♦  24 |  12  12  12   0   0 |   4   6   0   0   4   0   0   0   0   0 | 30  *  *  *  *  *  *  *  *  * | 1  1  0  0 0
x3x . x . ♦  12 |   6   6   0   6   0 |   2   0   3   0   0   3   0   0   0   0 |  * 60  *  *  *  *  *  *  *  * | 1  0  1  0 0
x3x . . x ♦  12 |   6   6   0   0   6 |   2   0   0   3   0   0   3   0   0   0 |  *  * 60  *  *  *  *  *  *  * | 0  1  1  0 0
x . x3x . ♦  12 |   6   0   6   6   0 |   0   3   3   0   0   0   0   2   0   0 |  *  *  * 60  *  *  *  *  *  * | 1  0  0  1 0
x . x . x ♦   8 |   4   0   4   0   4 |   0   2   0   2   0   0   0   0   2   0 |  *  *  *  * 90  *  *  *  *  * | 0  1  0  1 0
x . . x3x ♦  12 |   6   0   0   6   6 |   0   0   3   3   0   0   0   0   0   2 |  *  *  *  *  * 60  *  *  *  * | 0  0  1  1 0
. x3x3x . ♦  24 |   0  12  12  12   0 |   0   0   0   0   4   6   0   4   0   0 |  *  *  *  *  *  * 30  *  *  * | 1  0  0  0 1
. x3x . x ♦  12 |   0   6   6   0   6 |   0   0   0   0   2   0   3   0   3   0 |  *  *  *  *  *  *  * 60  *  * | 0  1  0  0 1
. x . x3x ♦  12 |   0   6   0   6   6 |   0   0   0   0   0   3   3   0   0   2 |  *  *  *  *  *  *  *  * 60  * | 0  0  1  0 1
. . x3x3x ♦  24 |   0   0  12  12  12 |   0   0   0   0   0   0   0   4   6   4 |  *  *  *  *  *  *  *  *  * 30 | 0  0  0  1 1
----------+-----+---------------------+-----------------------------------------+-------------------------------+-------------
x3x3x3x . ♦ 120 |  60  60  60  60   0 |  20  30  30   0  20  30   0  20   0   0 |  5 10  0 10  0  0  5  0  0  0 | 6  *  *  * *
x3x3x . x ♦  48 |  24  24  24   0  24 |   8  12   0  12   8   0  12   0  12   0 |  2  0  4  0  6  0  0  4  0  0 | * 15  *  * *
x3x . x3x ♦  36 |  18  18   0  18  18 |   6   0   9   9   0   9   9   0   0   6 |  0  3  3  0  0  3  0  0  3  0 | *  * 20  * *
x . x3x3x ♦  48 |  24   0  24  24  24 |   0  12  12  12   0   0   0   8  12   8 |  0  0  0  4  6  4  0  0  0  2 | *  *  * 15 *
. x3x3x3x ♦ 120 |   0  60  60  60  60 |   0   0   0   0  20  30  30  20  30  20 |  0  0  0  0  0  0  5 10 10  5 | *  *  *  * 6
```
```or
. . . . .    | 720 |   2   2   1 |   2   2   2   1   2   1 |  2   2   2   2  1  1 |  2  2  1
-------------+-----+-------------+-------------------------+----------------------+---------
x . . . .  & |   2 | 720   *   * |   1   1   1   1   0   0 |  1   1   2   1  1  0 |  1  2  1
. x . . .  & |   2 |   * 720   * |   1   0   1   0   1   1 |  1   2   1   1  0  1 |  2  1  1
. . x . .    |   2 |   *   * 360 |   0   2   0   0   2   0 |  2   0   0   2  1  1 |  2  2  0
-------------+-----+-------------+-------------------------+----------------------+---------
x3x . . .  & |   6 |   3   3   0 | 240   *   *   *   *   * |  1   1   1   0  0  0 |  1  1  1
x . x . .  & |   4 |   2   0   2 |   * 360   *   *   *   * |  1   0   0   1  1  0 |  1  2  0
x . . x .  & |   4 |   2   2   0 |   *   * 360   *   *   * |  0   1   1   1  0  0 |  1  1  1
x . . . x    |   4 |   4   0   0 |   *   *   * 180   *   * |  0   0   2   0  1  0 |  0  2  1
. x3x . .  & |   6 |   0   3   3 |   *   *   *   * 240   * |  1   0   0   1  0  1 |  2  1  0
. x . x .    |   4 |   0   4   0 |   *   *   *   *   * 180 |  0   2   0   0  0  1 |  2  0  1
-------------+-----+-------------+-------------------------+----------------------+---------
x3x3x . .  & ♦  24 |  12  12  12 |   4   6   0   0   4   0 | 60   *   *   *  *  * |  1  1  0
x3x . x .  & ♦  12 |   6  12   0 |   2   0   3   0   0   3 |  * 120   *   *  *  * |  1  0  1
x3x . . x  & ♦  12 |  12   6   0 |   2   0   3   3   0   0 |  *   * 120   *  *  * |  0  1  1
x . x3x .  & ♦  12 |   6   6   6 |   0   3   3   0   2   0 |  *   *   * 120  *  * |  1  1  0
x . x . x    ♦   8 |   8   0   4 |   0   4   0   2   0   0 |  *   *   *   * 90  * |  0  2  0
. x3x3x .    ♦  24 |   0  24  12 |   0   0   0   0   8   6 |  *   *   *   *  * 30 |  2  0  0
-------------+-----+-------------+-------------------------+----------------------+---------
x3x3x3x .  & ♦ 120 |  60 120  60 |  20  30  30   0  40  30 |  5  10   0  10  0  5 | 12  *  *
x3x3x . x  & ♦  48 |  48  24  24 |   8  24  12  12   8   0 |  2   0   4   4  6  0 |  * 30  *
x3x . x3x    ♦  36 |  36  36   0 |  12   0  18   9   0   9 |  0   6   6   0  0  0 |  *  * 20

snubbed forms: s3s3s3s3s
```