Acronym | snod (snix) |
Name |
snub dodecateron (snub hexateron), alternation of great cellated hexateron |
Circumradius | ... |
Face vector | 360, 2520, 4080, 2340, 422 |
Confer |
|
External links |
This isogonal polyteron is obtained by hemiation of gocad. But because of lower degree of freedom the resulting edge sizes cannot be made all alike.
The full symmetrical variants using the outer symmetry of the Dynkin diagram is refered to as snod, while the subsymmetric variants which break its outer symmetry get refered to as snix.
Incidence matrix according to Dynkin symbol
s3s3s3s3s demi( . . . . . ) | 360 | 2 2 1 1 4 4 | 2 2 6 6 6 6 3 3 | 2 2 2 2 1 1 8 8 4 | 2 2 1 5 --------------------+-----+-------------------------+---------------------------------+----------------------------------+------------- s 2 s . . & | 2 | 360 * * * * * | 0 0 2 0 0 2 2 0 | 1 0 0 1 1 0 2 4 0 | 1 2 0 2 q s 2 . s . & | 2 | * 360 * * * * | 0 0 0 2 2 2 0 0 | 0 1 1 1 0 0 2 2 2 | 1 1 1 2 q s . 2 . s | 2 | * * 180 * * * | 0 0 0 0 4 0 2 0 | 0 0 2 0 1 0 0 4 2 | 0 2 1 2 q . s 2 s . | 2 | * * * 180 * * | 0 0 0 4 0 0 0 2 | 0 2 0 0 0 1 4 0 2 | 2 0 1 2 q sefa( s3s . . . ) & | 2 | * * * * 720 * | 1 0 1 1 1 0 0 0 | 1 1 1 0 0 0 1 1 1 | 1 1 1 1 h sefa( . s3s . . ) & | 2 | * * * * * 720 | 0 1 1 0 0 1 0 1 | 1 0 0 1 0 1 2 1 0 | 2 1 0 1 h --------------------+-----+-------------------------+---------------------------------+----------------------------------+------------- s3s . . . & | 3 | 0 0 0 0 3 0 | 240 * * * * * * * | 1 1 1 0 0 0 0 0 0 | 1 1 1 0 h3o . s3s . . & | 3 | 0 0 0 0 0 3 | * 240 * * * * * * | 1 0 0 1 0 1 0 0 0 | 2 1 0 0 h3o sefa( s3s3s . . ) & | 3 | 1 0 0 0 1 1 | * * 720 * * * * * | 1 0 0 0 0 0 1 1 0 | 1 1 0 1 oq&#h sefa( s3s 2 s . ) & | 3 | 0 1 0 1 1 0 | * * * 720 * * * * | 0 1 0 0 0 0 1 0 1 | 1 0 1 1 oh&#q sefa( s3s 2 . s ) & | 3 | 0 1 1 0 1 0 | * * * * 720 * * * | 0 0 1 0 0 0 0 1 1 | 0 1 1 1 oh&#q sefa( s 2 s3s . ) & | 3 | 1 1 0 0 0 1 | * * * * * 720 * * | 0 0 0 1 0 0 1 1 0 | 1 1 0 1 oh&#q sefa( s 2 s 2 s ) | 3 | 2 0 1 0 0 0 | * * * * * * 360 * | 0 0 0 0 1 0 0 2 0 | 0 2 0 1 q3o sefa( . s3s3s . ) | 3 | 0 0 0 1 0 2 | * * * * * * * 360 | 0 0 0 0 0 1 2 0 0 | 2 0 0 1 oq&#h --------------------+-----+-------------------------+---------------------------------+----------------------------------+------------- s3s3s . . & | 12 | 6 0 0 0 12 12 | 4 4 12 0 0 0 0 0 | 60 * * * * * * * * | 1 1 0 0 pyritohedral ike variant s3s 2 s . & | 6 | 0 3 0 3 6 0 | 2 0 0 6 0 0 0 0 | * 120 * * * * * * * | 1 0 1 0 triangular antiprism s3s 2 . s & | 6 | 0 3 3 0 6 0 | 2 0 0 0 6 0 0 0 | * * 120 * * * * * * | 0 1 1 0 triangular antiprism s 2 s3s . & | 6 | 3 3 0 0 0 6 | 0 2 0 0 0 6 0 0 | * * * 120 * * * * * | 1 1 0 0 triangular antiprism s 2 s 2 s | 4 | 4 0 2 0 0 0 | 0 0 0 0 0 0 4 0 | * * * * 90 * * * * | 0 2 0 0 q-tetrahedra . s3s3s . | 12 | 0 0 0 6 0 24 | 0 8 0 0 0 0 0 12 | * * * * * 30 * * * | 2 0 0 0 pyritohedral ike variant sefa( s3s3s3s . ) & | 4 | 1 1 0 1 1 2 | 0 0 1 1 0 1 0 1 | * * * * * * 720 * * | 1 0 0 1 chiral digonal antifrustrum (disphenoid) sefa( s3s3s 2 s ) & | 4 | 2 1 1 0 1 1 | 0 0 1 0 1 1 1 0 | * * * * * * * 720 * | 0 1 0 1 pyramid above isot sefa( s3s 2 s3s ) | 4 | 0 2 1 1 2 0 | 0 0 0 2 2 0 0 0 | * * * * * * * * 360 | 0 0 1 1 digonal antiprism --------------------+-----+-------------------------+---------------------------------+----------------------------------+------------- s3s3s3s . & | 60 | 30 30 0 30 60 120 | 20 40 60 60 0 60 0 60 | 5 10 0 10 0 5 60 0 0 | 12 * * * snub decachoron s3s3s 2 s & | 24 | 24 12 12 0 24 24 | 8 8 24 0 24 24 24 0 | 2 0 4 4 6 0 0 24 0 | * 30 * * pyritohedral ike antiprism s3s 2 s3s | 18 | 0 18 9 9 36 0 | 12 0 0 36 36 0 0 0 | 0 6 6 0 0 0 0 0 18 | * * 20 * triangle duoantiprism sefa( s3s3s3s3s ) | 5 | 2 2 1 1 2 2 | 0 0 2 2 2 2 1 1 | 0 0 0 0 0 0 2 2 1 | * * * 360 pentachoron variant starting figure: x3x3x3x3x
© 2004-2025 | top of page |