Acronym | gikvacadint | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Name | great skewverted cellidispenteractitriacontiditeron | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Circumradius | sqrt[11-2 sqrt(2)]/2 = 1.429298 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Coordinates | (1+sqrt(2), sqrt(2)-1, sqrt(2)-1, 1, 1)/2 & all permutations, all changes of sign | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Colonel of regiment |
(is itself locally convex
– other uniform polyteral members:
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Face vector | 960, 3840, 3760, 1080, 92 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Confer |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
External links |
![]() |
As abstract polytope gikvacadint is isomorphic to sikvacadint, thereby replacing octagrams by octagons, resp. sirco by querco, gocco by socco, quith by tic, and stop by op, resp. skiviphado by gikviphado, quithip by ticcup, and wavitoth by rawvatoth.
Incidence matrix according to Dynkin symbol
3 3 3 x---o---x---o 4 \ / 4/3 x
x3o3x3o *b4x4/3*c . . . . . | 960 | 2 4 2 | 1 4 2 2 1 2 4 | 2 1 2 4 1 2 2 | 1 2 2 1 ------------------+-----+--------------+-----------------------------+--------------------------+------------ x . . . . | 2 | 960 * * | 1 2 1 0 0 0 0 | 2 1 1 2 0 0 0 | 1 2 1 0 . . x . . | 2 | * 1920 * | 0 1 0 1 0 1 1 | 1 0 1 1 1 1 1 | 1 1 1 1 . . . . x | 2 | * * 960 | 0 0 1 0 1 0 2 | 0 1 0 2 0 2 1 | 0 2 1 1 ------------------+-----+--------------+-----------------------------+--------------------------+------------ x3o . . . | 3 | 3 0 0 | 320 * * * * * * | 2 1 0 0 0 0 0 | 1 2 0 0 x . x . . | 4 | 2 2 0 | * 960 * * * * * | 1 0 1 1 0 0 0 | 1 1 1 0 x . . . x | 4 | 2 0 2 | * * 480 * * * * | 0 1 0 2 0 0 0 | 0 2 1 0 . o3x . . | 3 | 0 3 0 | * * * 640 * * * | 1 0 0 0 1 1 0 | 1 1 0 1 . o . . *b4x | 4 | 0 0 4 | * * * * 240 * * | 0 1 0 0 0 2 0 | 0 2 0 1 . . x3o . | 3 | 0 3 0 | * * * * * 640 * | 0 0 1 0 1 0 1 | 1 0 1 1 . . x . x4/3*c | 8 | 0 4 4 | * * * * * * 480 | 0 0 0 1 0 1 1 | 0 1 1 1 {8/3} ------------------+-----+--------------+-----------------------------+--------------------------+------------ x3o3x . . ♦ 12 | 12 12 0 | 4 6 0 4 0 0 0 | 160 * * * * * * | 1 1 0 0 x3o . . *b4x ♦ 24 | 24 0 24 | 8 0 12 0 6 0 0 | * 40 * * * * * | 0 2 0 0 x . x3o . ♦ 6 | 3 6 0 | 0 3 0 0 0 2 0 | * * 320 * * * * | 1 0 1 0 x . x . x4/3*c ♦ 16 | 8 8 8 | 0 4 4 0 0 0 2 | * * * 240 * * * | 0 1 1 0 . o3x3o . ♦ 6 | 0 12 0 | 0 0 0 4 0 4 0 | * * * * 160 * * | 1 0 0 1 . o3x . *b4x4/3*c ♦ 24 | 0 24 24 | 0 0 0 8 6 0 6 | * * * * * 80 * | 0 1 0 1 . . x3o x4/3*c ♦ 24 | 0 24 12 | 0 0 0 0 0 8 6 | * * * * * * 80 | 0 0 1 1 ------------------+-----+--------------+-----------------------------+--------------------------+------------ x3o3x3o . ♦ 30 | 30 60 0 | 10 30 0 20 0 20 0 | 5 0 10 0 5 0 0 | 32 * * * x3o3x . *b4x4/3*c ♦ 192 | 192 192 192 | 64 96 96 64 48 0 48 | 16 8 0 24 0 8 0 | * 10 * * x . x3o x4/3*c ♦ 48 | 24 48 24 | 0 24 12 0 0 16 12 | 0 0 8 6 0 0 2 | * * 40 * . o3x3o *b4x4/3*c ♦ 96 | 0 192 96 | 0 0 0 64 24 64 48 | 0 0 0 0 16 8 8 | * * * 10
3 3 3/2 x---o---x---o 4 \ / 4/3 x
x3o3x3/2o *b4x4/3*c . . . . . | 960 | 2 4 2 | 1 4 2 2 1 2 4 | 2 1 2 4 1 2 2 | 1 2 2 1 --------------------+-----+--------------+-----------------------------+--------------------------+------------ x . . . . | 2 | 960 * * | 1 2 1 0 0 0 0 | 2 1 1 2 0 0 0 | 1 2 1 0 . . x . . | 2 | * 1920 * | 0 1 0 1 0 1 1 | 1 0 1 1 1 1 1 | 1 1 1 1 . . . . x | 2 | * * 960 | 0 0 1 0 1 0 2 | 0 1 0 2 0 2 1 | 0 2 1 1 --------------------+-----+--------------+-----------------------------+--------------------------+------------ x3o . . . | 3 | 3 0 0 | 320 * * * * * * | 2 1 0 0 0 0 0 | 1 2 0 0 x . x . . | 4 | 2 2 0 | * 960 * * * * * | 1 0 1 1 0 0 0 | 1 1 1 0 x . . . x | 4 | 2 0 2 | * * 480 * * * * | 0 1 0 2 0 0 0 | 0 2 1 0 . o3x . . | 3 | 0 3 0 | * * * 640 * * * | 1 0 0 0 1 1 0 | 1 1 0 1 . o . . *b4x | 4 | 0 0 4 | * * * * 240 * * | 0 1 0 0 0 2 0 | 0 2 0 1 . . x3/2o . | 3 | 0 3 0 | * * * * * 640 * | 0 0 1 0 1 0 1 | 1 0 1 1 . . x . x4/3*c | 8 | 0 4 4 | * * * * * * 480 | 0 0 0 1 0 1 1 | 0 1 1 1 {8/3} --------------------+-----+--------------+-----------------------------+--------------------------+------------ x3o3x . . ♦ 12 | 12 12 0 | 4 6 0 4 0 0 0 | 160 * * * * * * | 1 1 0 0 x3o . . *b4x ♦ 24 | 24 0 24 | 8 0 12 0 6 0 0 | * 40 * * * * * | 0 2 0 0 x . x3/2o . ♦ 6 | 3 6 0 | 0 3 0 0 0 2 0 | * * 320 * * * * | 1 0 1 0 x . x . x4/3*c ♦ 16 | 8 8 8 | 0 4 4 0 0 0 2 | * * * 240 * * * | 0 1 1 0 . o3x3/2o . ♦ 6 | 0 12 0 | 0 0 0 4 0 4 0 | * * * * 160 * * | 1 0 0 1 . o3x . *b4x4/3*c ♦ 24 | 0 24 24 | 0 0 0 8 6 0 6 | * * * * * 80 * | 0 1 0 1 . . x3/2o x4/3*c ♦ 24 | 0 24 12 | 0 0 0 0 0 8 6 | * * * * * * 80 | 0 0 1 1 --------------------+-----+--------------+-----------------------------+--------------------------+------------ x3o3x3/2o . ♦ 30 | 30 60 0 | 10 30 0 20 0 20 0 | 5 0 10 0 5 0 0 | 32 * * * x3o3x . *b4x4/3*c ♦ 192 | 192 192 192 | 64 96 96 64 48 0 48 | 16 8 0 24 0 8 0 | * 10 * * x . x3/2o x4/3*c ♦ 48 | 24 48 24 | 0 24 12 0 0 16 12 | 0 0 8 6 0 0 2 | * * 40 * . o3x3/2o *b4x4/3*c ♦ 96 | 0 192 96 | 0 0 0 64 24 64 48 | 0 0 0 0 16 8 8 | * * * 10
3/2 3/2 3 x---o---x---o 4/3 \ / 4/3 x
x3/2o3/2x3o *b4/3x4/3*c . . . . . | 960 | 2 4 2 | 1 4 2 2 1 2 4 | 2 1 2 4 1 2 2 | 1 2 2 1 ------------------------+-----+--------------+-----------------------------+--------------------------+------------ x . . . . | 2 | 960 * * | 1 2 1 0 0 0 0 | 2 1 1 2 0 0 0 | 1 2 1 0 . . x . . | 2 | * 1920 * | 0 1 0 1 0 1 1 | 1 0 1 1 1 1 1 | 1 1 1 1 . . . . x | 2 | * * 960 | 0 0 1 0 1 0 2 | 0 1 0 2 0 2 1 | 0 2 1 1 ------------------------+-----+--------------+-----------------------------+--------------------------+------------ x3/2o . . . | 3 | 3 0 0 | 320 * * * * * * | 2 1 0 0 0 0 0 | 1 2 0 0 x . x . . | 4 | 2 2 0 | * 960 * * * * * | 1 0 1 1 0 0 0 | 1 1 1 0 x . . . x | 4 | 2 0 2 | * * 480 * * * * | 0 1 0 2 0 0 0 | 0 2 1 0 . o3/2x . . | 3 | 0 3 0 | * * * 640 * * * | 1 0 0 0 1 1 0 | 1 1 0 1 . o . . *b4/3x | 4 | 0 0 4 | * * * * 240 * * | 0 1 0 0 0 2 0 | 0 2 0 1 . . x3o . | 3 | 0 3 0 | * * * * * 640 * | 0 0 1 0 1 0 1 | 1 0 1 1 . . x . x4/3*c | 8 | 0 4 4 | * * * * * * 480 | 0 0 0 1 0 1 1 | 0 1 1 1 {8/3} ------------------------+-----+--------------+-----------------------------+--------------------------+------------ x3/2o3/2x . . ♦ 12 | 12 12 0 | 4 6 0 4 0 0 0 | 160 * * * * * * | 1 1 0 0 x3/2o . . *b4/3x ♦ 24 | 24 0 24 | 8 0 12 0 6 0 0 | * 40 * * * * * | 0 2 0 0 x . x3o . ♦ 6 | 3 6 0 | 0 3 0 0 0 2 0 | * * 320 * * * * | 1 0 1 0 x . x . x4/3*c ♦ 16 | 8 8 8 | 0 4 4 0 0 0 2 | * * * 240 * * * | 0 1 1 0 . o3/2x3o . ♦ 6 | 0 12 0 | 0 0 0 4 0 4 0 | * * * * 160 * * | 1 0 0 1 . o3/2x . *b4/3x4/3*c ♦ 24 | 0 24 24 | 0 0 0 8 6 0 6 | * * * * * 80 * | 0 1 0 1 . . x3o x4/3*c ♦ 24 | 0 24 12 | 0 0 0 0 0 8 6 | * * * * * * 80 | 0 0 1 1 ------------------------+-----+--------------+-----------------------------+--------------------------+------------ x3/2o3/2x3o . ♦ 30 | 30 60 0 | 10 30 0 20 0 20 0 | 5 0 10 0 5 0 0 | 32 * * * x3/2o3/2x . *b4/3x4/3*c ♦ 192 | 192 192 192 | 64 96 96 64 48 0 48 | 16 8 0 24 0 8 0 | * 10 * * x . x3o x4/3*c ♦ 48 | 24 48 24 | 0 24 12 0 0 16 12 | 0 0 8 6 0 0 2 | * * 40 * . o3/2x3o *b4/3x4/3*c ♦ 96 | 0 192 96 | 0 0 0 64 24 64 48 | 0 0 0 0 16 8 8 | * * * 10
3/2 3/2 3/2 x---o---x---o 4/3 \ / 4/3 x
x3/2o3/2x3/2o *b4/3x4/3*c . . . . . | 960 | 2 4 2 | 1 4 2 2 1 2 4 | 2 1 2 4 1 2 2 | 1 2 2 1 --------------------------+-----+--------------+-----------------------------+--------------------------+------------ x . . . . | 2 | 960 * * | 1 2 1 0 0 0 0 | 2 1 1 2 0 0 0 | 1 2 1 0 . . x . . | 2 | * 1920 * | 0 1 0 1 0 1 1 | 1 0 1 1 1 1 1 | 1 1 1 1 . . . . x | 2 | * * 960 | 0 0 1 0 1 0 2 | 0 1 0 2 0 2 1 | 0 2 1 1 --------------------------+-----+--------------+-----------------------------+--------------------------+------------ x3/2o . . . | 3 | 3 0 0 | 320 * * * * * * | 2 1 0 0 0 0 0 | 1 2 0 0 x . x . . | 4 | 2 2 0 | * 960 * * * * * | 1 0 1 1 0 0 0 | 1 1 1 0 x . . . x | 4 | 2 0 2 | * * 480 * * * * | 0 1 0 2 0 0 0 | 0 2 1 0 . o3/2x . . | 3 | 0 3 0 | * * * 640 * * * | 1 0 0 0 1 1 0 | 1 1 0 1 . o . . *b4/3x | 4 | 0 0 4 | * * * * 240 * * | 0 1 0 0 0 2 0 | 0 2 0 1 . . x3/2o . | 3 | 0 3 0 | * * * * * 640 * | 0 0 1 0 1 0 1 | 1 0 1 1 . . x . x4/3*c | 8 | 0 4 4 | * * * * * * 480 | 0 0 0 1 0 1 1 | 0 1 1 1 {8/3} --------------------------+-----+--------------+-----------------------------+--------------------------+------------ x3/2o3/2x . . ♦ 12 | 12 12 0 | 4 6 0 4 0 0 0 | 160 * * * * * * | 1 1 0 0 x3/2o . . *b4/3x ♦ 24 | 24 0 24 | 8 0 12 0 6 0 0 | * 40 * * * * * | 0 2 0 0 x . x3/2o . ♦ 6 | 3 6 0 | 0 3 0 0 0 2 0 | * * 320 * * * * | 1 0 1 0 x . x . x4/3*c ♦ 16 | 8 8 8 | 0 4 4 0 0 0 2 | * * * 240 * * * | 0 1 1 0 . o3/2x3/2o . ♦ 6 | 0 12 0 | 0 0 0 4 0 4 0 | * * * * 160 * * | 1 0 0 1 . o3/2x . *b4/3x4/3*c ♦ 24 | 0 24 24 | 0 0 0 8 6 0 6 | * * * * * 80 * | 0 1 0 1 . . x3/2o x4/3*c ♦ 24 | 0 24 12 | 0 0 0 0 0 8 6 | * * * * * * 80 | 0 0 1 1 --------------------------+-----+--------------+-----------------------------+--------------------------+------------ x3/2o3/2x3/2o . ♦ 30 | 30 60 0 | 10 30 0 20 0 20 0 | 5 0 10 0 5 0 0 | 32 * * * x3/2o3/2x . *b4/3x4/3*c ♦ 192 | 192 192 192 | 64 96 96 64 48 0 48 | 16 8 0 24 0 8 0 | * 10 * * x . x3/2o x4/3*c ♦ 48 | 24 48 24 | 0 24 12 0 0 16 12 | 0 0 8 6 0 0 2 | * * 40 * . o3/2x3/2o *b4/3x4/3*c ♦ 96 | 0 192 96 | 0 0 0 64 24 64 48 | 0 0 0 0 16 8 8 | * * * 10
© 2004-2025 | top of page |