Acronym wavitoth
Name sphenoverted tesseractitesseractihexadecachoron
Cross sections
 ©
Circumradius sqrt[2-sqrt(2)] = 0.765367
Coordinates ((sqrt(2)-1)/2, (sqrt(2)-1)/2, 1/2, 1/2)   & all permutations, all changes of sign
General of army srit
Colonel of regiment (is itself locally convex – uniform polychoral members:
by cells: gocco groh oct querco quith stop trip
wavitoth 80160800
girdo 08008032
gaqript 08000240
qrit 001680032
gapript 000082432
& others)
Face vector 96, 288, 200, 32
Confer
general polytopal classes:
Wythoffian polychora  
External
links
hedrondude   polytopewiki   WikiChoron

As abstract polytope wavitoth is isomorphic to rawvatoth, thereby replacing octagrams by octagons, resp. gocco by socco and quith by tic.


Incidence matrix according to Dynkin symbol

o3x3o4x4/3*b

. . . .      | 96 |   4  2 |  2  2  4  1 |  1 2 2
-------------+----+--------+-------------+-------
. x . .      |  2 | 192  * |  1  1  1  0 |  1 1 1
. . . x      |  2 |   * 96 |  0  0  2  1 |  0 1 2
-------------+----+--------+-------------+-------
o3x . .      |  3 |   3  0 | 64  *  *  * |  1 1 0
. x3o .      |  3 |   3  0 |  * 64  *  * |  1 0 1
. x . x4/3*b |  8 |   4  4 |  *  * 48  * |  0 1 1
. . o4x      |  4 |   0  4 |  *  *  * 24 |  0 0 2
-------------+----+--------+-------------+-------
o3x3o .        6 |  12  0 |  4  4  0  0 | 16 * *
o3x . x4/3*b  24 |  24 12 |  8  0  6  0 |  * 8 *
. x3o4x4/3*b  24 |  24 24 |  0  8  6  6 |  * * 8

o3x3/2o4/3x4/3*b

. .   .   .      | 96 |   4  2 |  2  2  4  1 |  1 2 2
-----------------+----+--------+-------------+-------
. x   .   .      |  2 | 192  * |  1  1  1  0 |  1 1 1
. .   .   x      |  2 |   * 96 |  0  0  2  1 |  0 1 2
-----------------+----+--------+-------------+-------
o3x   .   .      |  3 |   3  0 | 64  *  *  * |  1 1 0
. x3/2o   .      |  3 |   3  0 |  * 64  *  * |  1 0 1
. x   .   x4/3*b |  8 |   4  4 |  *  * 48  * |  0 1 1
. .   o4/3x      |  4 |   0  4 |  *  *  * 24 |  0 0 2
-----------------+----+--------+-------------+-------
o3x3/2o   .        6 |  12  0 |  4  4  0  0 | 16 * *
o3x   .   x4/3*b  24 |  24 12 |  8  0  6  0 |  * 8 *
. x3/2o4/3x4/3*b  24 |  24 24 |  0  8  6  6 |  * * 8

o3/2x3o4x4/3*b

.   . . .      | 96 |   4  2 |  2  2  4  1 |  1 2 2
---------------+----+--------+-------------+-------
.   x . .      |  2 | 192  * |  1  1  1  0 |  1 1 1
.   . . x      |  2 |   * 96 |  0  0  2  1 |  0 1 2
---------------+----+--------+-------------+-------
o3/2x . .      |  3 |   3  0 | 64  *  *  * |  1 1 0
.   x3o .      |  3 |   3  0 |  * 64  *  * |  1 0 1
.   x . x4/3*b |  8 |   4  4 |  *  * 48  * |  0 1 1
.   . o4x      |  4 |   0  4 |  *  *  * 24 |  0 0 2
---------------+----+--------+-------------+-------
o3/2x3o .        6 |  12  0 |  4  4  0  0 | 16 * *
o3/2x . x4/3*b  24 |  24 12 |  8  0  6  0 |  * 8 *
.   x3o4x4/3*b  24 |  24 24 |  0  8  6  6 |  * * 8

o3/2x3/2o4/3x4/3*b

.   .   .   .      | 96 |   4  2 |  2  2  4  1 |  1 2 2
-------------------+----+--------+-------------+-------
.   x   .   .      |  2 | 192  * |  1  1  1  0 |  1 1 1
.   .   .   x      |  2 |   * 96 |  0  0  2  1 |  0 1 2
-------------------+----+--------+-------------+-------
o3/2x   .   .      |  3 |   3  0 | 64  *  *  * |  1 1 0
.   x3/2o   .      |  3 |   3  0 |  * 64  *  * |  1 0 1
.   x   .   x4/3*b |  8 |   4  4 |  *  * 48  * |  0 1 1
.   .   o4/3x      |  4 |   0  4 |  *  *  * 24 |  0 0 2
-------------------+----+--------+-------------+-------
o3/2x3/2o   .        6 |  12  0 |  4  4  0  0 | 16 * *
o3/2x   .   x4/3*b  24 |  24 12 |  8  0  6  0 |  * 8 *
.   x3/2o4/3x4/3*b  24 |  24 24 |  0  8  6  6 |  * * 8

© 2004-2025
top of page