Acronym skiviphado
Name small skewverted prismatohexadecadisoctachoron
Cross sections
 ©
Circumradius sqrt(2) = 1.414214
Colonel of regiment (is itself locally convex – uniform polychoral members:
by cells: co gocco hip oho op querco sirco socco stop
skiviphado 16800008024
gikviphado 16000248080
kaviphdit 00321608800
& others)
External
links
hedrondude   WikiChoron  

As abstract polytope skiviphado is isomorphic to gikviphado, thereby replacing octagrams by octagons, resp. replacing the sirco by querco, gocco by socco, and stop by op.


Incidence matrix according to Dynkin symbol

x3o3x4/3x4*b

. . .   .    | 192 |   2   2   2 |  1  2  2  1  1  2 |  1 1  2 1
-------------+-----+-------------+-------------------+----------
x . .   .    |   2 | 192   *   * |  1  1  1  0  0  0 |  1 1  1 0
. . x   .    |   2 |   * 192   * |  0  1  0  1  0  1 |  1 0  1 1
. . .   x    |   2 |   *   * 192 |  0  0  1  0  1  1 |  0 1  1 1
-------------+-----+-------------+-------------------+----------
x3o .   .    |   3 |   3   0   0 | 64  *  *  *  *  * |  1 1  0 0
x . x   .    |   4 |   2   2   0 |  * 96  *  *  *  * |  1 0  1 0
x . .   x    |   4 |   2   0   2 |  *  * 96  *  *  * |  0 1  1 0
. o3x   .    |   3 |   0   3   0 |  *  *  * 64  *  * |  1 0  0 1
. o .   x4*b |   4 |   0   0   4 |  *  *  *  * 48  * |  0 1  0 1
. . x4/3x    |   8 |   0   4   4 |  *  *  *  *  * 48 |  0 0  1 1
-------------+-----+-------------+-------------------+----------
x3o3x   .      12 |  12  12   0 |  4  6  0  4  0  0 | 16 *  * *
x3o .   x4*b   24 |  24   0  24 |  8  0 12  0  6  0 |  * 8  * *
x . x4/3x      16 |   8   8   8 |  0  4  4  0  0  2 |  * * 24 *
. o3x4/3x4*b   24 |   0  24  24 |  0  0  0  8  6  6 |  * *  * 8

x3/2o3/2x4/3x4/3*b

.   .   .   .      | 192 |   2   2   2 |  1  2  2  1  1  2 |  1 1  2 1
-------------------+-----+-------------+-------------------+----------
x   .   .   .      |   2 | 192   *   * |  1  1  1  0  0  0 |  1 1  1 0
.   .   x   .      |   2 |   * 192   * |  0  1  0  1  0  1 |  1 0  1 1
.   .   .   x      |   2 |   *   * 192 |  0  0  1  0  1  1 |  0 1  1 1
-------------------+-----+-------------+-------------------+----------
x3/2o   .   .      |   3 |   3   0   0 | 64  *  *  *  *  * |  1 1  0 0
x   .   x   .      |   4 |   2   2   0 |  * 96  *  *  *  * |  1 0  1 0
x   .   .   x      |   4 |   2   0   2 |  *  * 96  *  *  * |  0 1  1 0
.   o3/2x   .      |   3 |   0   3   0 |  *  *  * 64  *  * |  1 0  0 1
.   o   .   x4/3*b |   4 |   0   0   4 |  *  *  *  * 48  * |  0 1  0 1
.   .   x4/3x      |   8 |   0   4   4 |  *  *  *  *  * 48 |  0 0  1 1
-------------------+-----+-------------+-------------------+----------
x3/2o3/2x   .        12 |  12  12   0 |  4  6  0  4  0  0 | 16 *  * *
x3/2o   .   x4/3*b   24 |  24   0  24 |  8  0 12  0  6  0 |  * 8  * *
x   .   x4/3x        16 |   8   8   8 |  0  4  4  0  0  2 |  * * 24 *
.   o3/2x4/3x4/3*b   24 |   0  24  24 |  0  0  0  8  6  6 |  * *  * 8

© 2004-2019
top of page