Acronym | skiviphado | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Name | small skewverted prismatohexadecadisoctachoron | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Cross sections |
© | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Circumradius | sqrt(2) = 1.414214 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Coordinates | ((1+sqrt(2))/2, 1/2, 1/2, (sqrt(2)-1)/2) & all permutations, all changes of sign | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Colonel of regiment |
(is itself locally convex
– uniform polychoral members:
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Face vector | 192, 576, 416, 56 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Confer |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||
External links |
As abstract polytope skiviphado is isomorphic to gikviphado, thereby replacing octagrams by octagons, resp. replacing the sirco by querco, gocco by socco, and stop by op.
Skiviphado itself, in its cubical direction, comes within 6 consecutive vertex layers: gocco || cotco || sirco || sirco || cotco || gocco. The polar caps clearly are goccoa cotco each. The medial tristratic remainder then is the pabdi skiviphado.
Incidence matrix according to Dynkin symbol
x3o3x4/3x4*b . . . . | 192 | 2 2 2 | 1 2 2 1 1 2 | 1 1 2 1 -------------+-----+-------------+-------------------+---------- x . . . | 2 | 192 * * | 1 1 1 0 0 0 | 1 1 1 0 . . x . | 2 | * 192 * | 0 1 0 1 0 1 | 1 0 1 1 . . . x | 2 | * * 192 | 0 0 1 0 1 1 | 0 1 1 1 -------------+-----+-------------+-------------------+---------- x3o . . | 3 | 3 0 0 | 64 * * * * * | 1 1 0 0 x . x . | 4 | 2 2 0 | * 96 * * * * | 1 0 1 0 x . . x | 4 | 2 0 2 | * * 96 * * * | 0 1 1 0 . o3x . | 3 | 0 3 0 | * * * 64 * * | 1 0 0 1 . o . x4*b | 4 | 0 0 4 | * * * * 48 * | 0 1 0 1 . . x4/3x | 8 | 0 4 4 | * * * * * 48 | 0 0 1 1 -------------+-----+-------------+-------------------+---------- x3o3x . ♦ 12 | 12 12 0 | 4 6 0 4 0 0 | 16 * * * x3o . x4*b ♦ 24 | 24 0 24 | 8 0 12 0 6 0 | * 8 * * x . x4/3x ♦ 16 | 8 8 8 | 0 4 4 0 0 2 | * * 24 * . o3x4/3x4*b ♦ 24 | 0 24 24 | 0 0 0 8 6 6 | * * * 8
x3/2o3/2x4/3x4/3*b . . . . | 192 | 2 2 2 | 1 2 2 1 1 2 | 1 1 2 1 -------------------+-----+-------------+-------------------+---------- x . . . | 2 | 192 * * | 1 1 1 0 0 0 | 1 1 1 0 . . x . | 2 | * 192 * | 0 1 0 1 0 1 | 1 0 1 1 . . . x | 2 | * * 192 | 0 0 1 0 1 1 | 0 1 1 1 -------------------+-----+-------------+-------------------+---------- x3/2o . . | 3 | 3 0 0 | 64 * * * * * | 1 1 0 0 x . x . | 4 | 2 2 0 | * 96 * * * * | 1 0 1 0 x . . x | 4 | 2 0 2 | * * 96 * * * | 0 1 1 0 . o3/2x . | 3 | 0 3 0 | * * * 64 * * | 1 0 0 1 . o . x4/3*b | 4 | 0 0 4 | * * * * 48 * | 0 1 0 1 . . x4/3x | 8 | 0 4 4 | * * * * * 48 | 0 0 1 1 -------------------+-----+-------------+-------------------+---------- x3/2o3/2x . ♦ 12 | 12 12 0 | 4 6 0 4 0 0 | 16 * * * x3/2o . x4/3*b ♦ 24 | 24 0 24 | 8 0 12 0 6 0 | * 8 * * x . x4/3x ♦ 16 | 8 8 8 | 0 4 4 0 0 2 | * * 24 * . o3/2x4/3x4/3*b ♦ 24 | 0 24 24 | 0 0 0 8 6 6 | * * * 8
© 2004-2024 | top of page |