Acronym skiviphado
Name small skewverted prismatohexadecadisoctachoron
Cross sections
 ©
Circumradius sqrt(2) = 1.414214
Coordinates ((1+sqrt(2))/2, 1/2, 1/2, (sqrt(2)-1)/2)   & all permutations, all changes of sign
Colonel of regiment (is itself locally convex – uniform polychoral members:
by cells: co cotco gocco hip oho op querco sirco socco stop
skiviphado 160800008024
gikviphado 160000248080
kavahto 08801600080
kaviphdit 000321608800
& others)
Face vector 192, 576, 416, 56
Confer
segmentochora:
goccoa cotco  
general polytopal classes:
Wythoffian polychora  
External
links
hedrondude   polytopewiki   WikiChoron

As abstract polytope skiviphado is isomorphic to gikviphado, thereby replacing octagrams by octagons, resp. replacing the sirco by querco, gocco by socco, and stop by op.

Skiviphado itself, in its cubical direction, comes within 6 consecutive vertex layers: gocco || cotco || sirco || sirco || cotco || gocco. The polar caps clearly are goccoa cotco each. The medial tristratic remainder then is the pabdi skiviphado.


Incidence matrix according to Dynkin symbol

x3o3x4/3x4*b

. . .   .    | 192 |   2   2   2 |  1  2  2  1  1  2 |  1 1  2 1
-------------+-----+-------------+-------------------+----------
x . .   .    |   2 | 192   *   * |  1  1  1  0  0  0 |  1 1  1 0
. . x   .    |   2 |   * 192   * |  0  1  0  1  0  1 |  1 0  1 1
. . .   x    |   2 |   *   * 192 |  0  0  1  0  1  1 |  0 1  1 1
-------------+-----+-------------+-------------------+----------
x3o .   .    |   3 |   3   0   0 | 64  *  *  *  *  * |  1 1  0 0
x . x   .    |   4 |   2   2   0 |  * 96  *  *  *  * |  1 0  1 0
x . .   x    |   4 |   2   0   2 |  *  * 96  *  *  * |  0 1  1 0
. o3x   .    |   3 |   0   3   0 |  *  *  * 64  *  * |  1 0  0 1
. o .   x4*b |   4 |   0   0   4 |  *  *  *  * 48  * |  0 1  0 1
. . x4/3x    |   8 |   0   4   4 |  *  *  *  *  * 48 |  0 0  1 1
-------------+-----+-------------+-------------------+----------
x3o3x   .      12 |  12  12   0 |  4  6  0  4  0  0 | 16 *  * *
x3o .   x4*b   24 |  24   0  24 |  8  0 12  0  6  0 |  * 8  * *
x . x4/3x      16 |   8   8   8 |  0  4  4  0  0  2 |  * * 24 *
. o3x4/3x4*b   24 |   0  24  24 |  0  0  0  8  6  6 |  * *  * 8

x3/2o3/2x4/3x4/3*b

.   .   .   .      | 192 |   2   2   2 |  1  2  2  1  1  2 |  1 1  2 1
-------------------+-----+-------------+-------------------+----------
x   .   .   .      |   2 | 192   *   * |  1  1  1  0  0  0 |  1 1  1 0
.   .   x   .      |   2 |   * 192   * |  0  1  0  1  0  1 |  1 0  1 1
.   .   .   x      |   2 |   *   * 192 |  0  0  1  0  1  1 |  0 1  1 1
-------------------+-----+-------------+-------------------+----------
x3/2o   .   .      |   3 |   3   0   0 | 64  *  *  *  *  * |  1 1  0 0
x   .   x   .      |   4 |   2   2   0 |  * 96  *  *  *  * |  1 0  1 0
x   .   .   x      |   4 |   2   0   2 |  *  * 96  *  *  * |  0 1  1 0
.   o3/2x   .      |   3 |   0   3   0 |  *  *  * 64  *  * |  1 0  0 1
.   o   .   x4/3*b |   4 |   0   0   4 |  *  *  *  * 48  * |  0 1  0 1
.   .   x4/3x      |   8 |   0   4   4 |  *  *  *  *  * 48 |  0 0  1 1
-------------------+-----+-------------+-------------------+----------
x3/2o3/2x   .        12 |  12  12   0 |  4  6  0  4  0  0 | 16 *  * *
x3/2o   .   x4/3*b   24 |  24   0  24 |  8  0 12  0  6  0 |  * 8  * *
x   .   x4/3x        16 |   8   8   8 |  0  4  4  0  0  2 |  * * 24 *
.   o3/2x4/3x4/3*b   24 |   0  24  24 |  0  0  0  8  6  6 |  * *  * 8

© 2004-2024
top of page