Acronym gikviphado Name great skewverted prismatohexadecadisoctachoron Cross sections ` ©` Circumradius sqrt(2) = 1.414214 Coordinates ((1+sqrt(2))/2, 1/2, 1/2, (sqrt(2)-1)/2)   & all permutations, all changes of sign Colonel of regiment skiviphado Externallinks

As abstract polytope gikviphado is isomorphic to skiviphado, thereby replacing octagons by octagrams, resp. replacing the querco by sirco, socco by gocco, and op by stop. – As such gikviphado is a lieutenant.

Incidence matrix according to Dynkin symbol

```x3o3x4x4/3*b

. . . .      | 192 |   2   2   2 |  1  2  2  1  1  2 |  1 1  2 1
-------------+-----+-------------+-------------------+----------
x . . .      |   2 | 192   *   * |  1  1  1  0  0  0 |  1 1  1 0
. . x .      |   2 |   * 192   * |  0  1  0  1  0  1 |  1 0  1 1
. . . x      |   2 |   *   * 192 |  0  0  1  0  1  1 |  0 1  1 1
-------------+-----+-------------+-------------------+----------
x3o . .      |   3 |   3   0   0 | 64  *  *  *  *  * |  1 1  0 0
x . x .      |   4 |   2   2   0 |  * 96  *  *  *  * |  1 0  1 0
x . . x      |   4 |   2   0   2 |  *  * 96  *  *  * |  0 1  1 0
. o3x .      |   3 |   0   3   0 |  *  *  * 64  *  * |  1 0  0 1
. o . x4/3*b |   4 |   0   0   4 |  *  *  *  * 48  * |  0 1  0 1
. . x4x      |   8 |   0   4   4 |  *  *  *  *  * 48 |  0 0  1 1
-------------+-----+-------------+-------------------+----------
x3o3x .      ♦  12 |  12  12   0 |  4  6  0  4  0  0 | 16 *  * *
x3o . x4/3*b ♦  24 |  24   0  24 |  8  0 12  0  6  0 |  * 8  * *
x . x4x      ♦  16 |   8   8   8 |  0  4  4  0  0  2 |  * * 24 *
. o3x4x4/3*b ♦  24 |   0  24  24 |  0  0  0  8  6  6 |  * *  * 8
```

```x3/2o3/2x4x4*b

.   .   . .    | 192 |   2   2   2 |  1  2  2  1  1  2 |  1 1  2 1
---------------+-----+-------------+-------------------+----------
x   .   . .    |   2 | 192   *   * |  1  1  1  0  0  0 |  1 1  1 0
.   .   x .    |   2 |   * 192   * |  0  1  0  1  0  1 |  1 0  1 1
.   .   . x    |   2 |   *   * 192 |  0  0  1  0  1  1 |  0 1  1 1
---------------+-----+-------------+-------------------+----------
x3/2o   . .    |   3 |   3   0   0 | 64  *  *  *  *  * |  1 1  0 0
x   .   x .    |   4 |   2   2   0 |  * 96  *  *  *  * |  1 0  1 0
x   .   . x    |   4 |   2   0   2 |  *  * 96  *  *  * |  0 1  1 0
.   o3/2x .    |   3 |   0   3   0 |  *  *  * 64  *  * |  1 0  0 1
.   o   . x4*b |   4 |   0   0   4 |  *  *  *  * 48  * |  0 1  0 1
.   .   x4x    |   8 |   0   4   4 |  *  *  *  *  * 48 |  0 0  1 1
---------------+-----+-------------+-------------------+----------
x3/2o3/2x .    ♦  12 |  12  12   0 |  4  6  0  4  0  0 | 16 *  * *
x3/2o   . x4*b ♦  24 |  24   0  24 |  8  0 12  0  6  0 |  * 8  * *
x   .   x4x    ♦  16 |   8   8   8 |  0  4  4  0  0  2 |  * * 24 *
.   o3/2x4x4*b ♦  24 |   0  24  24 |  0  0  0  8  6  6 |  * *  * 8
```