Acronym gikviphado
Name great skewverted prismatohexadecadisoctachoron
Cross sections
 ©
Circumradius sqrt(2) = 1.414214
Coordinates ((1+sqrt(2))/2, 1/2, 1/2, (sqrt(2)-1)/2)   & all permutations, all changes of sign
Colonel of regiment skiviphado
Face vector 192, 576, 416, 56
Confer
general polytopal classes:
Wythoffian polychora  
External
links
hedrondude   polytopewiki   WikiChoron  

As abstract polytope gikviphado is isomorphic to skiviphado, thereby replacing octagons by octagrams, resp. replacing the querco by sirco, socco by gocco, and op by stop. – As such gikviphado is a lieutenant.


Incidence matrix according to Dynkin symbol

x3o3x4x4/3*b

. . . .      | 192 |   2   2   2 |  1  2  2  1  1  2 |  1 1  2 1
-------------+-----+-------------+-------------------+----------
x . . .      |   2 | 192   *   * |  1  1  1  0  0  0 |  1 1  1 0
. . x .      |   2 |   * 192   * |  0  1  0  1  0  1 |  1 0  1 1
. . . x      |   2 |   *   * 192 |  0  0  1  0  1  1 |  0 1  1 1
-------------+-----+-------------+-------------------+----------
x3o . .      |   3 |   3   0   0 | 64  *  *  *  *  * |  1 1  0 0
x . x .      |   4 |   2   2   0 |  * 96  *  *  *  * |  1 0  1 0
x . . x      |   4 |   2   0   2 |  *  * 96  *  *  * |  0 1  1 0
. o3x .      |   3 |   0   3   0 |  *  *  * 64  *  * |  1 0  0 1
. o . x4/3*b |   4 |   0   0   4 |  *  *  *  * 48  * |  0 1  0 1
. . x4x      |   8 |   0   4   4 |  *  *  *  *  * 48 |  0 0  1 1
-------------+-----+-------------+-------------------+----------
x3o3x .        12 |  12  12   0 |  4  6  0  4  0  0 | 16 *  * *
x3o . x4/3*b   24 |  24   0  24 |  8  0 12  0  6  0 |  * 8  * *
x . x4x        16 |   8   8   8 |  0  4  4  0  0  2 |  * * 24 *
. o3x4x4/3*b   24 |   0  24  24 |  0  0  0  8  6  6 |  * *  * 8

x3/2o3/2x4x4*b

.   .   . .    | 192 |   2   2   2 |  1  2  2  1  1  2 |  1 1  2 1
---------------+-----+-------------+-------------------+----------
x   .   . .    |   2 | 192   *   * |  1  1  1  0  0  0 |  1 1  1 0
.   .   x .    |   2 |   * 192   * |  0  1  0  1  0  1 |  1 0  1 1
.   .   . x    |   2 |   *   * 192 |  0  0  1  0  1  1 |  0 1  1 1
---------------+-----+-------------+-------------------+----------
x3/2o   . .    |   3 |   3   0   0 | 64  *  *  *  *  * |  1 1  0 0
x   .   x .    |   4 |   2   2   0 |  * 96  *  *  *  * |  1 0  1 0
x   .   . x    |   4 |   2   0   2 |  *  * 96  *  *  * |  0 1  1 0
.   o3/2x .    |   3 |   0   3   0 |  *  *  * 64  *  * |  1 0  0 1
.   o   . x4*b |   4 |   0   0   4 |  *  *  *  * 48  * |  0 1  0 1
.   .   x4x    |   8 |   0   4   4 |  *  *  *  *  * 48 |  0 0  1 1
---------------+-----+-------------+-------------------+----------
x3/2o3/2x .      12 |  12  12   0 |  4  6  0  4  0  0 | 16 *  * *
x3/2o   . x4*b   24 |  24   0  24 |  8  0 12  0  6  0 |  * 8  * *
x   .   x4x      16 |   8   8   8 |  0  4  4  0  0  2 |  * * 24 *
.   o3/2x4x4*b   24 |   0  24  24 |  0  0  0  8  6  6 |  * *  * 8

© 2004-2025
top of page