Acronym kaviphdit
Name skewverted prismatohexadecadistesseract
Cross sections
 ©
Circumradius sqrt(2) = 1.414214
Coordinates ((1+sqrt(2))/2, 1/2, 1/2, (sqrt(2)-1)/2)   & all permutations, all changes of sign
Colonel of regiment skiviphado
Face vector 192, 576, 432, 64
Confer
general polytopal classes:
Wythoffian polychora  
External
links
hedrondude   polytopewiki  

As abstract polytope kaviphdit is automorph, thereby interchanging the roles of querco and sirco.


Incidence matrix according to Dynkin symbol

x4o3x3x3/2*b

. . . .      | 192 |   2   2   2 |  1  2  2  1  1  2 | 1 1  2  1
-------------+-----+-------------+-------------------+----------
x . . .      |   2 | 192   *   * |  1  1  1  0  0  0 | 1 1  1  0
. . x .      |   2 |   * 192   * |  0  1  0  1  0  1 | 1 0  1  1
. . . x      |   2 |   *   * 192 |  0  0  1  0  1  1 | 0 1  1  1
-------------+-----+-------------+-------------------+----------
x4o . .      |   4 |   4   0   0 | 48  *  *  *  *  * | 1 1  0  0
x . x .      |   4 |   2   2   0 |  * 96  *  *  *  * | 1 0  1  0
x . . x      |   4 |   2   0   2 |  *  * 96  *  *  * | 0 1  1  0
. o3x .      |   3 |   0   3   0 |  *  *  * 64  *  * | 1 0  0  1
. o . x3/2*b |   3 |   0   0   3 |  *  *  *  * 64  * | 0 1  0  1
. . x3x      |   6 |   0   3   3 |  *  *  *  *  * 64 | 0 0  1  1
-------------+-----+-------------+-------------------+----------
x4o3x .        24 |  24  24   0 |  6 12  0  8  0  0 | 8 *  *  *
x4o . x3/2*b   24 |  24   0  24 |  6  0 12  0  8  0 | * 8  *  *
x . x3x        12 |   6   6   6 |  0  3  3  0  0  2 | * * 32  *
. o3x3x3/2*b   12 |   0  12  12 |  0  0  0  4  4  4 | * *  * 16

x4/3o3x3x3/2*b

.   . . .      | 192 |   2   2   2 |  1  2  2  1  1  2 | 1 1  2  1
---------------+-----+-------------+-------------------+----------
x   . . .      |   2 | 192   *   * |  1  1  1  0  0  0 | 1 1  1  0
.   . x .      |   2 |   * 192   * |  0  1  0  1  0  1 | 1 0  1  1
.   . . x      |   2 |   *   * 192 |  0  0  1  0  1  1 | 0 1  1  1
---------------+-----+-------------+-------------------+----------
x4/3o . .      |   4 |   4   0   0 | 48  *  *  *  *  * | 1 1  0  0
x   . x .      |   4 |   2   2   0 |  * 96  *  *  *  * | 1 0  1  0
x   . . x      |   4 |   2   0   2 |  *  * 96  *  *  * | 0 1  1  0
.   o3x .      |   3 |   0   3   0 |  *  *  * 64  *  * | 1 0  0  1
.   o . x3/2*b |   3 |   0   0   3 |  *  *  *  * 64  * | 0 1  0  1
.   . x3x      |   6 |   0   3   3 |  *  *  *  *  * 64 | 0 0  1  1
---------------+-----+-------------+-------------------+----------
x4/3o3x .        24 |  24  24   0 |  6 12  0  8  0  0 | 8 *  *  *
x4/3o . x3/2*b   24 |  24   0  24 |  6  0 12  0  8  0 | * 8  *  *
x   . x3x        12 |   6   6   6 |  0  3  3  0  0  2 | * * 32  *
.   o3x3x3/2*b   12 |   0  12  12 |  0  0  0  4  4  4 | * *  * 16

© 2004-2025
top of page