Acronym kaviphdit Name skewverted prismatohexadecadistesseract Cross sections ` ©` Circumradius sqrt(2) = 1.414214 Coordinates ((1+sqrt(2))/2, 1/2, 1/2, (sqrt(2)-1)/2)   & all permutations, all changes of sign Colonel of regiment skiviphado Externallinks

As abstract polytope kaviphdit is automorph, thereby interchanging the roles of querco and sirco.

Incidence matrix according to Dynkin symbol

```x4o3x3x3/2*b

. . . .      | 192 |   2   2   2 |  1  2  2  1  1  2 | 1 1  2  1
-------------+-----+-------------+-------------------+----------
x . . .      |   2 | 192   *   * |  1  1  1  0  0  0 | 1 1  1  0
. . x .      |   2 |   * 192   * |  0  1  0  1  0  1 | 1 0  1  1
. . . x      |   2 |   *   * 192 |  0  0  1  0  1  1 | 0 1  1  1
-------------+-----+-------------+-------------------+----------
x4o . .      |   4 |   4   0   0 | 48  *  *  *  *  * | 1 1  0  0
x . x .      |   4 |   2   2   0 |  * 96  *  *  *  * | 1 0  1  0
x . . x      |   4 |   2   0   2 |  *  * 96  *  *  * | 0 1  1  0
. o3x .      |   3 |   0   3   0 |  *  *  * 64  *  * | 1 0  0  1
. o . x3/2*b |   3 |   0   0   3 |  *  *  *  * 64  * | 0 1  0  1
. . x3x      |   6 |   0   3   3 |  *  *  *  *  * 64 | 0 0  1  1
-------------+-----+-------------+-------------------+----------
x4o3x .      ♦  24 |  24  24   0 |  6 12  0  8  0  0 | 8 *  *  *
x4o . x3/2*b ♦  24 |  24   0  24 |  6  0 12  0  8  0 | * 8  *  *
x . x3x      ♦  12 |   6   6   6 |  0  3  3  0  0  2 | * * 32  *
. o3x3x3/2*b ♦  12 |   0  12  12 |  0  0  0  4  4  4 | * *  * 16
```

```x4/3o3x3x3/2*b

.   . . .      | 192 |   2   2   2 |  1  2  2  1  1  2 | 1 1  2  1
---------------+-----+-------------+-------------------+----------
x   . . .      |   2 | 192   *   * |  1  1  1  0  0  0 | 1 1  1  0
.   . x .      |   2 |   * 192   * |  0  1  0  1  0  1 | 1 0  1  1
.   . . x      |   2 |   *   * 192 |  0  0  1  0  1  1 | 0 1  1  1
---------------+-----+-------------+-------------------+----------
x4/3o . .      |   4 |   4   0   0 | 48  *  *  *  *  * | 1 1  0  0
x   . x .      |   4 |   2   2   0 |  * 96  *  *  *  * | 1 0  1  0
x   . . x      |   4 |   2   0   2 |  *  * 96  *  *  * | 0 1  1  0
.   o3x .      |   3 |   0   3   0 |  *  *  * 64  *  * | 1 0  0  1
.   o . x3/2*b |   3 |   0   0   3 |  *  *  *  * 64  * | 0 1  0  1
.   . x3x      |   6 |   0   3   3 |  *  *  *  *  * 64 | 0 0  1  1
---------------+-----+-------------+-------------------+----------
x4/3o3x .      ♦  24 |  24  24   0 |  6 12  0  8  0  0 | 8 *  *  *
x4/3o . x3/2*b ♦  24 |  24   0  24 |  6  0 12  0  8  0 | * 8  *  *
x   . x3x      ♦  12 |   6   6   6 |  0  3  3  0  0  2 | * * 32  *
.   o3x3x3/2*b ♦  12 |   0  12  12 |  0  0  0  4  4  4 | * *  * 16
```