Acronym | gibtadin | |||||||||||||||||||||
Name | great biprismatotriacontadiadispenteract | |||||||||||||||||||||
Field of sections |
| |||||||||||||||||||||
Circumradius | sqrt[23-10 sqrt(2)]/2 = 1.488108 | |||||||||||||||||||||
Vertex figure |
| |||||||||||||||||||||
Coordinates | (2 sqrt(2)-1, 2 sqrt(2)-1, sqrt(2)-1, 1, 1)/2 & all permutations, all changes of sign | |||||||||||||||||||||
Colonel of regiment |
(is itself locally convex
– uniform polyteral members:
| |||||||||||||||||||||
Face vector | 960, 2880, 2720, 1000, 132 | |||||||||||||||||||||
Confer |
| |||||||||||||||||||||
External links |
![]() ![]() |
As abstract polytope gibtadin is isomorphic to sibtadin, thereby replacing octagrams by octagons, resp. quitco by girco and gocco by socco, resp. gaqrit by grit and gichado by sichado.
Incidence matrix according to Dynkin symbol
3 3 3 o---x---x---o 4 \ / 4/3 x
o3x3x3o4x4/3*c . . . . . | 960 | 2 2 2 | 1 4 4 1 2 1 | 2 2 2 4 2 1 | 1 2 1 2 ---------------+-----+-------------+-------------------------+-----------------------+------------ . x . . . | 2 | 960 * * | 1 2 2 0 0 0 | 2 2 1 2 1 0 | 1 2 1 1 . . x . . | 2 | * 960 * | 0 2 0 1 1 0 | 1 0 2 2 0 1 | 1 1 0 2 . . . . x | 2 | * * 960 | 0 0 2 0 1 1 | 0 1 0 2 2 1 | 0 1 1 2 ---------------+-----+-------------+-------------------------+-----------------------+------------ o3x . . . | 3 | 3 0 0 | 320 * * * * * | 2 2 0 0 0 0 | 1 2 1 0 . x3x . . | 6 | 3 3 0 | * 640 * * * * | 1 0 1 1 0 0 | 1 1 0 1 . x . . x | 4 | 2 0 2 | * * 960 * * * | 0 1 0 1 1 0 | 0 1 1 1 . . x3o . | 3 | 0 3 0 | * * * 320 * * | 0 0 2 0 0 1 | 1 0 0 2 . . x . x4/3*c | 8 | 0 4 4 | * * * * 240 * | 0 0 0 2 0 1 | 0 1 0 2 . . . o4x | 4 | 0 0 4 | * * * * * 240 | 0 0 0 0 2 1 | 0 0 1 2 ---------------+-----+-------------+-------------------------+-----------------------+------------ o3x3x . . ♦ 12 | 12 6 0 | 4 4 0 0 0 0 | 160 * * * * * | 1 1 0 0 o3x . . x ♦ 6 | 6 0 3 | 2 0 3 0 0 0 | * 320 * * * * | 0 1 1 0 . x3x3o . ♦ 12 | 6 12 0 | 0 4 0 4 0 0 | * * 160 * * * | 1 0 0 1 . x3x . x4/3*c ♦ 48 | 24 24 24 | 0 8 12 0 6 0 | * * * 80 * * | 0 1 0 1 . x . o4x ♦ 8 | 4 0 8 | 0 0 4 0 0 2 | * * * * 240 * | 0 0 1 1 . . x3o4x4/3*c ♦ 24 | 0 24 24 | 0 0 0 8 6 6 | * * * * * 40 | 0 0 0 2 ---------------+-----+-------------+-------------------------+-----------------------+------------ o3x3x3o . ♦ 30 | 30 30 0 | 10 20 0 10 0 0 | 5 0 5 0 0 0 | 32 * * * o3x3x . x4/3*c ♦ 192 | 192 96 96 | 64 64 96 0 24 0 | 16 32 0 8 0 0 | * 10 * * o3x . o4x ♦ 12 | 12 0 12 | 4 0 12 0 0 3 | 0 4 0 0 3 0 | * * 80 * . x3x3o4x4/3*c ♦ 192 | 96 192 192 | 0 64 96 64 48 48 | 0 0 16 8 24 8 | * * * 10
3/2 3 3 o---x---x---o 4/3 \ / 4/3 x
o3x3x3/2o4/3x4/3*c . . . . . | 960 | 2 2 2 | 1 4 4 1 2 1 | 2 2 2 4 2 1 | 1 2 1 2 -------------------+-----+-------------+-------------------------+-----------------------+------------ . x . . . | 2 | 960 * * | 1 2 2 0 0 0 | 2 2 1 2 1 0 | 1 2 1 1 . . x . . | 2 | * 960 * | 0 2 0 1 1 0 | 1 0 2 2 0 1 | 1 1 0 2 . . . . x | 2 | * * 960 | 0 0 2 0 1 1 | 0 1 0 2 2 1 | 0 1 1 2 -------------------+-----+-------------+-------------------------+-----------------------+------------ o3x . . . | 3 | 3 0 0 | 320 * * * * * | 2 2 0 0 0 0 | 1 2 1 0 . x3x . . | 6 | 3 3 0 | * 640 * * * * | 1 0 1 1 0 0 | 1 1 0 1 . x . . x | 4 | 2 0 2 | * * 960 * * * | 0 1 0 1 1 0 | 0 1 1 1 . . x3/2o . | 3 | 0 3 0 | * * * 320 * * | 0 0 2 0 0 1 | 1 0 0 2 . . x . x4/3*c | 8 | 0 4 4 | * * * * 240 * | 0 0 0 2 0 1 | 0 1 0 2 . . . o4/3x | 4 | 0 0 4 | * * * * * 240 | 0 0 0 0 2 1 | 0 0 1 2 -------------------+-----+-------------+-------------------------+-----------------------+------------ o3x3x . . ♦ 12 | 12 6 0 | 4 4 0 0 0 0 | 160 * * * * * | 1 1 0 0 o3x . . x ♦ 6 | 6 0 3 | 2 0 3 0 0 0 | * 320 * * * * | 0 1 1 0 . x3x3/2o . ♦ 12 | 6 12 0 | 0 4 0 4 0 0 | * * 160 * * * | 1 0 0 1 . x3x . x4/3*c ♦ 48 | 24 24 24 | 0 8 12 0 6 0 | * * * 80 * * | 0 1 0 1 . x . o4/3x ♦ 8 | 4 0 8 | 0 0 4 0 0 2 | * * * * 240 * | 0 0 1 1 . . x3/2o4/3x4/3*c ♦ 24 | 0 24 24 | 0 0 0 8 6 6 | * * * * * 40 | 0 0 0 2 -------------------+-----+-------------+-------------------------+-----------------------+------------ o3x3x3/2o . ♦ 30 | 30 30 0 | 10 20 0 10 0 0 | 5 0 5 0 0 0 | 32 * * * o3x3x . x4/3*c ♦ 192 | 192 96 96 | 64 64 96 0 24 0 | 16 32 0 8 0 0 | * 10 * * o3x . o4/3x ♦ 12 | 12 0 12 | 4 0 12 0 0 3 | 0 4 0 0 3 0 | * * 80 * . x3x3/2o4/3x4/3*c ♦ 192 | 96 192 192 | 0 64 96 64 48 48 | 0 0 16 8 24 8 | * * * 10
3 3 3/2 o---x---x---o 4 \ / 4/3 x
o3/2x3x3o4x4/3*c . . . . . | 960 | 2 2 2 | 1 4 4 1 2 1 | 2 2 2 4 2 1 | 1 2 1 2 -----------------+-----+-------------+-------------------------+-----------------------+------------ . x . . . | 2 | 960 * * | 1 2 2 0 0 0 | 2 2 1 2 1 0 | 1 2 1 1 . . x . . | 2 | * 960 * | 0 2 0 1 1 0 | 1 0 2 2 0 1 | 1 1 0 2 . . . . x | 2 | * * 960 | 0 0 2 0 1 1 | 0 1 0 2 2 1 | 0 1 1 2 -----------------+-----+-------------+-------------------------+-----------------------+------------ o3/2x . . . | 3 | 3 0 0 | 320 * * * * * | 2 2 0 0 0 0 | 1 2 1 0 . x3x . . | 6 | 3 3 0 | * 640 * * * * | 1 0 1 1 0 0 | 1 1 0 1 . x . . x | 4 | 2 0 2 | * * 960 * * * | 0 1 0 1 1 0 | 0 1 1 1 . . x3o . | 3 | 0 3 0 | * * * 320 * * | 0 0 2 0 0 1 | 1 0 0 2 . . x . x4/3*c | 8 | 0 4 4 | * * * * 240 * | 0 0 0 2 0 1 | 0 1 0 2 . . . o4x | 4 | 0 0 4 | * * * * * 240 | 0 0 0 0 2 1 | 0 0 1 2 -----------------+-----+-------------+-------------------------+-----------------------+------------ o3/2x3x . . ♦ 12 | 12 6 0 | 4 4 0 0 0 0 | 160 * * * * * | 1 1 0 0 o3/2x . . x ♦ 6 | 6 0 3 | 2 0 3 0 0 0 | * 320 * * * * | 0 1 1 0 . x3x3o . ♦ 12 | 6 12 0 | 0 4 0 4 0 0 | * * 160 * * * | 1 0 0 1 . x3x . x4/3*c ♦ 48 | 24 24 24 | 0 8 12 0 6 0 | * * * 80 * * | 0 1 0 1 . x . o4x ♦ 8 | 4 0 8 | 0 0 4 0 0 2 | * * * * 240 * | 0 0 1 1 . . x3o4x4/3*c ♦ 24 | 0 24 24 | 0 0 0 8 6 6 | * * * * * 40 | 0 0 0 2 -----------------+-----+-------------+-------------------------+-----------------------+------------ o3/2x3x3o . ♦ 30 | 30 30 0 | 10 20 0 10 0 0 | 5 0 5 0 0 0 | 32 * * * o3/2x3x . x4/3*c ♦ 192 | 192 96 96 | 64 64 96 0 24 0 | 16 32 0 8 0 0 | * 10 * * o3/2x . o4x ♦ 12 | 12 0 12 | 4 0 12 0 0 3 | 0 4 0 0 3 0 | * * 80 * . x3x3o4x4/3*c ♦ 192 | 96 192 192 | 0 64 96 64 48 48 | 0 0 16 8 24 8 | * * * 10
3/2 3 3/2 o---x---x---o 4/3 \ / 4/3 x
o3/2x3x3/2o4/3x4/3*c . . . . . | 960 | 2 2 2 | 1 4 4 1 2 1 | 2 2 2 4 2 1 | 1 2 1 2 ---------------------+-----+-------------+-------------------------+-----------------------+------------ . x . . . | 2 | 960 * * | 1 2 2 0 0 0 | 2 2 1 2 1 0 | 1 2 1 1 . . x . . | 2 | * 960 * | 0 2 0 1 1 0 | 1 0 2 2 0 1 | 1 1 0 2 . . . . x | 2 | * * 960 | 0 0 2 0 1 1 | 0 1 0 2 2 1 | 0 1 1 2 ---------------------+-----+-------------+-------------------------+-----------------------+------------ o3/2x . . . | 3 | 3 0 0 | 320 * * * * * | 2 2 0 0 0 0 | 1 2 1 0 . x3x . . | 6 | 3 3 0 | * 640 * * * * | 1 0 1 1 0 0 | 1 1 0 1 . x . . x | 4 | 2 0 2 | * * 960 * * * | 0 1 0 1 1 0 | 0 1 1 1 . . x3/2o . | 3 | 0 3 0 | * * * 320 * * | 0 0 2 0 0 1 | 1 0 0 2 . . x . x4/3*c | 8 | 0 4 4 | * * * * 240 * | 0 0 0 2 0 1 | 0 1 0 2 . . . o4/3x | 4 | 0 0 4 | * * * * * 240 | 0 0 0 0 2 1 | 0 0 1 2 ---------------------+-----+-------------+-------------------------+-----------------------+------------ o3/2x3x . . ♦ 12 | 12 6 0 | 4 4 0 0 0 0 | 160 * * * * * | 1 1 0 0 o3/2x . . x ♦ 6 | 6 0 3 | 2 0 3 0 0 0 | * 320 * * * * | 0 1 1 0 . x3x3/2o . ♦ 12 | 6 12 0 | 0 4 0 4 0 0 | * * 160 * * * | 1 0 0 1 . x3x . x4/3*c ♦ 48 | 24 24 24 | 0 8 12 0 6 0 | * * * 80 * * | 0 1 0 1 . x . o4/3x ♦ 8 | 4 0 8 | 0 0 4 0 0 2 | * * * * 240 * | 0 0 1 1 . . x3/2o4/3x4/3*c ♦ 24 | 0 24 24 | 0 0 0 8 6 6 | * * * * * 40 | 0 0 0 2 ---------------------+-----+-------------+-------------------------+-----------------------+------------ o3/2x3x3/2o . ♦ 30 | 30 30 0 | 10 20 0 10 0 0 | 5 0 5 0 0 0 | 32 * * * o3/2x3x . x4/3*c ♦ 192 | 192 96 96 | 64 64 96 0 24 0 | 16 32 0 8 0 0 | * 10 * * o3/2x . o4/3x ♦ 12 | 12 0 12 | 4 0 12 0 0 3 | 0 4 0 0 3 0 | * * 80 * . x3x3/2o4/3x4/3*c ♦ 192 | 96 192 192 | 0 64 96 64 48 48 | 0 0 16 8 24 8 | * * * 10
© 2004-2025 | top of page |