Acronym | gibtadin | |||||||||||||||||||||
Name | great biprismatotriacontadiadispenteract | |||||||||||||||||||||
Field of sections |
© | |||||||||||||||||||||
Circumradius | sqrt[23-10 sqrt(2)]/2 = 1.488108 | |||||||||||||||||||||
Vertex figure |
© | |||||||||||||||||||||
Coordinates | ((2 sqrt(2)-1)/2, (2 sqrt(2)-1)/2, (sqrt(2)-1)/2, 1/2, 1/2) & all permutations, all changes of sign | |||||||||||||||||||||
Colonel of regiment |
(is itself locally convex
– uniform polyteral members:
| |||||||||||||||||||||
Face vector | 960, 2880, 2720, 1000, 132 | |||||||||||||||||||||
Confer |
| |||||||||||||||||||||
External links |
As abstract polytope gibtadin is isomorphic to sibtadin, thereby replacing octagrams by octagons, resp. quitco by girco and gocco by socco, resp. gaqrit by grit and gichado by sichado.
Incidence matrix according to Dynkin symbol
o3x3x3o4x4/3*c . . . . . | 960 | 2 2 2 | 1 4 4 1 2 1 | 2 2 2 4 2 1 | 1 2 1 2 ---------------+-----+-------------+-------------------------+-----------------------+------------ . x . . . | 2 | 960 * * | 1 2 2 0 0 0 | 2 2 1 2 1 0 | 1 2 1 1 . . x . . | 2 | * 960 * | 0 2 0 1 1 0 | 1 0 2 2 0 1 | 1 1 0 2 . . . . x | 2 | * * 960 | 0 0 2 0 1 1 | 0 1 0 2 2 1 | 0 1 1 2 ---------------+-----+-------------+-------------------------+-----------------------+------------ o3x . . . | 3 | 3 0 0 | 320 * * * * * | 2 2 0 0 0 0 | 1 2 1 0 . x3x . . | 6 | 3 3 0 | * 640 * * * * | 1 0 1 1 0 0 | 1 1 0 1 . x . . x | 4 | 2 0 2 | * * 960 * * * | 0 1 0 1 1 0 | 0 1 1 1 . . x3o . | 3 | 0 3 0 | * * * 320 * * | 0 0 2 0 0 1 | 1 0 0 2 . . x . x4/3*c | 8 | 0 4 4 | * * * * 240 * | 0 0 0 2 0 1 | 0 1 0 2 . . . o4x | 4 | 0 0 4 | * * * * * 240 | 0 0 0 0 2 1 | 0 0 1 2 ---------------+-----+-------------+-------------------------+-----------------------+------------ o3x3x . . ♦ 12 | 12 6 0 | 4 4 0 0 0 0 | 160 * * * * * | 1 1 0 0 o3x . . x ♦ 6 | 6 0 3 | 2 0 3 0 0 0 | * 320 * * * * | 0 1 1 0 . x3x3o . ♦ 12 | 6 12 0 | 0 4 0 4 0 0 | * * 160 * * * | 1 0 0 1 . x3x . x4/3*c ♦ 48 | 24 24 24 | 0 8 12 0 6 0 | * * * 80 * * | 0 1 0 1 . x . o4x ♦ 8 | 4 0 8 | 0 0 4 0 0 2 | * * * * 240 * | 0 0 1 1 . . x3o4x4/3*c ♦ 24 | 0 24 24 | 0 0 0 8 6 6 | * * * * * 40 | 0 0 0 2 ---------------+-----+-------------+-------------------------+-----------------------+------------ o3x3x3o . ♦ 30 | 30 30 0 | 10 20 0 10 0 0 | 5 0 5 0 0 0 | 32 * * * o3x3x . x4/3*c ♦ 192 | 192 96 96 | 64 64 96 0 24 0 | 16 32 0 8 0 0 | * 10 * * o3x . o4x ♦ 12 | 12 0 12 | 4 0 12 0 0 3 | 0 4 0 0 3 0 | * * 80 * . x3x3o4x4/3*c ♦ 192 | 96 192 192 | 0 64 96 64 48 48 | 0 0 16 8 24 8 | * * * 10
© 2004-2024 | top of page |