Acronym gibtadin
Name great biprismatotriacontadiadispenteract
Field of sections
 ©
Circumradius sqrt[23-10 sqrt(2)]/2 = 1.488108
Vertex figure
 ©
Coordinates ((2 sqrt(2)-1)/2, (2 sqrt(2)-1)/2, (sqrt(2)-1)/2, 1/2, 1/2)   & all permutations, all changes of sign
Colonel of regiment (is itself locally convex – uniform polyteral members:
by facets: deca gaqrit gichado paqrit tisdip tuttip
gibtadin 3210100800
quiprin 3200108080
& others)
Face vector 960, 2880, 2720, 1000, 132
Confer
general polytopal classes:
Wythoffian polytera  
External
links
hedrondude   polytopewiki

As abstract polytope gibtadin is isomorphic to sibtadin, thereby replacing octagrams by octagons, resp. quitco by girco and gocco by socco, resp. gaqrit by grit and gichado by sichado.


Incidence matrix according to Dynkin symbol

o3x3x3o4x4/3*c

. . . . .      | 960 |   2   2   2 |   1   4   4   1   2   1 |   2   2   2  4   2  1 |  1  2  1  2
---------------+-----+-------------+-------------------------+-----------------------+------------
. x . . .      |   2 | 960   *   * |   1   2   2   0   0   0 |   2   2   1  2   1  0 |  1  2  1  1
. . x . .      |   2 |   * 960   * |   0   2   0   1   1   0 |   1   0   2  2   0  1 |  1  1  0  2
. . . . x      |   2 |   *   * 960 |   0   0   2   0   1   1 |   0   1   0  2   2  1 |  0  1  1  2
---------------+-----+-------------+-------------------------+-----------------------+------------
o3x . . .      |   3 |   3   0   0 | 320   *   *   *   *   * |   2   2   0  0   0  0 |  1  2  1  0
. x3x . .      |   6 |   3   3   0 |   * 640   *   *   *   * |   1   0   1  1   0  0 |  1  1  0  1
. x . . x      |   4 |   2   0   2 |   *   * 960   *   *   * |   0   1   0  1   1  0 |  0  1  1  1
. . x3o .      |   3 |   0   3   0 |   *   *   * 320   *   * |   0   0   2  0   0  1 |  1  0  0  2
. . x . x4/3*c |   8 |   0   4   4 |   *   *   *   * 240   * |   0   0   0  2   0  1 |  0  1  0  2
. . . o4x      |   4 |   0   0   4 |   *   *   *   *   * 240 |   0   0   0  0   2  1 |  0  0  1  2
---------------+-----+-------------+-------------------------+-----------------------+------------
o3x3x . .        12 |  12   6   0 |   4   4   0   0   0   0 | 160   *   *  *   *  * |  1  1  0  0
o3x . . x         6 |   6   0   3 |   2   0   3   0   0   0 |   * 320   *  *   *  * |  0  1  1  0
. x3x3o .        12 |   6  12   0 |   0   4   0   4   0   0 |   *   * 160  *   *  * |  1  0  0  1
. x3x . x4/3*c   48 |  24  24  24 |   0   8  12   0   6   0 |   *   *   * 80   *  * |  0  1  0  1
. x . o4x         8 |   4   0   8 |   0   0   4   0   0   2 |   *   *   *  * 240  * |  0  0  1  1
. . x3o4x4/3*c   24 |   0  24  24 |   0   0   0   8   6   6 |   *   *   *  *   * 40 |  0  0  0  2
---------------+-----+-------------+-------------------------+-----------------------+------------
o3x3x3o .        30 |  30  30   0 |  10  20   0  10   0   0 |   5   0   5  0   0  0 | 32  *  *  *
o3x3x . x4/3*c  192 | 192  96  96 |  64  64  96   0  24   0 |  16  32   0  8   0  0 |  * 10  *  *
o3x . o4x        12 |  12   0  12 |   4   0  12   0   0   3 |   0   4   0  0   3  0 |  *  * 80  *
. x3x3o4x4/3*c  192 |  96 192 192 |   0  64  96  64  48  48 |   0   0  16  8  24  8 |  *  *  * 10

© 2004-2025
top of page