Acronym sibtadin
Name small biprismatotriacontadiadispenteract
Field of sections
 ©
Circumradius sqrt[23+10 sqrt(2)]/2 = 3.047217
Vertex figure
 ©
Coordinates ((1+2 sqrt(2))/2, (1+2 sqrt(2))/2, (1+sqrt(2))/2, 1/2, 1/2)   & all permutations, all changes of sign
General of army prin
Colonel of regiment prin
Face vector 960, 2880, 2720, 1000, 132
Confer
general polytopal classes:
Wythoffian polytera  
External
links
hedrondude   polytopewiki

As abstract polytope sibtadin is isomorphic to gibtadin, thereby replacing octagons by octagrams, resp. girco by quitco and socco by gocco, resp. grit by gaqrit and sichado by gichado. – As such sibtadin is a lieutenant.


Incidence matrix according to Dynkin symbol

o3x3x3o4/3x4*c

. . . .   .    | 960 |   2   2   2 |   1   4   4   1   2   1 |   2   2   2  4   2  1 |  1  2  1  2
---------------+-----+-------------+-------------------------+-----------------------+------------
. x . .   .    |   2 | 960   *   * |   1   2   2   0   0   0 |   2   2   1  2   1  0 |  1  2  1  1
. . x .   .    |   2 |   * 960   * |   0   2   0   1   1   0 |   1   0   2  2   0  1 |  1  1  0  2
. . . .   x    |   2 |   *   * 960 |   0   0   2   0   1   1 |   0   1   0  2   2  1 |  0  1  1  2
---------------+-----+-------------+-------------------------+-----------------------+------------
o3x . .   .    |   3 |   3   0   0 | 320   *   *   *   *   * |   2   2   0  0   0  0 |  1  2  1  0
. x3x .   .    |   6 |   3   3   0 |   * 640   *   *   *   * |   1   0   1  1   0  0 |  1  1  0  1
. x . .   x    |   4 |   2   0   2 |   *   * 960   *   *   * |   0   1   0  1   1  0 |  0  1  1  1
. . x3o   .    |   3 |   0   3   0 |   *   *   * 320   *   * |   0   0   2  0   0  1 |  1  0  0  2
. . x .   x4*c |   8 |   0   4   4 |   *   *   *   * 240   * |   0   0   0  2   0  1 |  0  1  0  2
. . . o4/3x    |   4 |   0   0   4 |   *   *   *   *   * 240 |   0   0   0  0   2  1 |  0  0  1  2
---------------+-----+-------------+-------------------------+-----------------------+------------
o3x3x .   .      12 |  12   6   0 |   4   4   0   0   0   0 | 160   *   *  *   *  * |  1  1  0  0
o3x . .   x       6 |   6   0   3 |   2   0   3   0   0   0 |   * 320   *  *   *  * |  0  1  1  0
. x3x3o   .      12 |   6  12   0 |   0   4   0   4   0   0 |   *   * 160  *   *  * |  1  0  0  1
. x3x .   x4*c   48 |  24  24  24 |   0   8  12   0   6   0 |   *   *   * 80   *  * |  0  1  0  1
. x . o4/3x       8 |   4   0   8 |   0   0   4   0   0   2 |   *   *   *  * 240  * |  0  0  1  1
. . x3o4/3x4*c   24 |   0  24  24 |   0   0   0   8   6   6 |   *   *   *  *   * 40 |  0  0  0  2
---------------+-----+-------------+-------------------------+-----------------------+------------
o3x3x3o   .      30 |  30  30   0 |  10  20   0  10   0   0 |   5   0   5  0   0  0 | 32  *  *  *
o3x3x .   x4*c  192 | 192  96  96 |  64  64  96   0  24   0 |  16  32   0  8   0  0 |  * 10  *  *
o3x . o4/3x      12 |  12   0  12 |   4   0  12   0   0   3 |   0   4   0  0   3  0 |  *  * 80  *
. x3x3o4/3x4*c  192 |  96 192 192 |   0  64  96  64  48  48 |   0   0  16  8  24  8 |  *  *  * 10

© 2004-2025
top of page