Acronym quiprin
Name quasiprismatorhombated penteract
Circumradius sqrt[23-10 sqrt(2)]/2 = 1.488108
Vertex figure
 ©
Coordinates ((2 sqrt(2)-1)/2, (2 sqrt(2)-1)/2, (sqrt(2)-1)/2, 1/2, 1/2)   & all permutations, all changes of sign
Colonel of regiment gibtadin
Face vector 960, 2880, 2960, 1240, 202
Confer
general polytopal classes:
Wythoffian polytera  
External
links
hedrondude   polytopewiki

As abstract polyteron quiprin is isomorph to prin, thereby replacing retrograde by prograde squares, resp. querco by sirco, resp. paqrit by prit.


Incidence matrix according to Dynkin symbol

o3x3x3o4/3x

. . . .   . | 960 |   2   2   2 |   1   4   4   1   2   1 |   2   2   2   4   2  1 |  1  2  1  2
------------+-----+-------------+-------------------------+------------------------+------------
. x . .   . |   2 | 960   *   * |   1   2   2   0   0   0 |   2   2   1   2   1  0 |  1  2  1  1
. . x .   . |   2 |   * 960   * |   0   2   0   1   1   0 |   1   0   2   2   0  1 |  1  1  0  2
. . . .   x |   2 |   *   * 960 |   0   0   2   0   1   1 |   0   1   0   2   2  1 |  0  1  1  2
------------+-----+-------------+-------------------------+------------------------+------------
o3x . .   . |   3 |   3   0   0 | 320   *   *   *   *   * |   2   2   0   0   0  0 |  1  2  1  0
. x3x .   . |   6 |   3   3   0 |   * 640   *   *   *   * |   1   0   1   1   0  0 |  1  1  0  1
. x . .   x |   4 |   2   0   2 |   *   * 960   *   *   * |   0   1   0   1   1  0 |  0  1  1  1
. . x3o   . |   3 |   0   3   0 |   *   *   * 320   *   * |   0   0   2   0   0  1 |  1  0  0  2
. . x .   x |   4 |   0   2   2 |   *   *   *   * 480   * |   0   0   0   2   0  1 |  0  1  0  2
. . . o4/3x |   4 |   0   0   4 |   *   *   *   *   * 240 |   0   0   0   0   2  1 |  0  0  1  2
------------+-----+-------------+-------------------------+------------------------+------------
o3x3x .   .   12 |  12   6   0 |   4   4   0   0   0   0 | 160   *   *   *   *  * |  1  1  0  0
o3x . .   x    6 |   6   0   3 |   2   0   3   0   0   0 |   * 320   *   *   *  * |  0  1  1  0
. x3x3o   .   12 |   6  12   0 |   0   4   0   4   0   0 |   *   * 160   *   *  * |  1  0  0  1
. x3x .   x   12 |   6   6   6 |   0   2   3   0   3   0 |   *   *   * 320   *  * |  0  1  0  1
. x . o4/3x    8 |   4   0   8 |   0   0   4   0   0   2 |   *   *   *   * 240  * |  0  0  1  1
. . x3o4/3x   24 |   0  24  24 |   0   0   0   8  12   6 |   *   *   *   *   * 40 |  0  0  0  2
------------+-----+-------------+-------------------------+------------------------+------------
o3x3x3o   .   30 |  30  30   0 |  10  20   0  10   0   0 |   5   0   5   0   0  0 | 32  *  *  *
o3x3x .   x   24 |  24  12  12 |   8   8  12   0   6   0 |   2   4   0   4   0  0 |  * 80  *  *
o3x . o4/3x   12 |  12   0  12 |   4   0  12   0   0   3 |   0   4   0   0   3  0 |  *  * 80  *
. x3x3o4/3x  192 |  96 192 192 |   0  64  96  64  96  48 |   0   0  16  32  24  8 |  *  *  * 10

© 2004-2024
top of page