Acronym quiprin
Name quasiprismatorhombated penteract
Circumradius sqrt[23-10 sqrt(2)]/2 = 1.488108
Vertex figure
 ©
Coordinates ((2 sqrt(2)-1)/2, (2 sqrt(2)-1)/2, (sqrt(2)-1)/2, 1/2, 1/2)   & all permutations, all changes of sign
Colonel of regiment gibtadin
External
links
hedrondude  

As abstract polyteron quiprin is isomorph to prin, thereby replacing retrograde by prograde squares, resp. querco by sirco, resp. paqrit by prit.


Incidence matrix according to Dynkin symbol

o3x3x3o4/3x

. . . .   . | 960 |   2   2   2 |   1   4   4   1   2   1 |   2   2   2   4   2  1 |  1  2  1  2
------------+-----+-------------+-------------------------+------------------------+------------
. x . .   . |   2 | 960   *   * |   1   2   2   0   0   0 |   2   2   1   2   1  0 |  1  2  1  1
. . x .   . |   2 |   * 960   * |   0   2   0   1   1   0 |   1   0   2   2   0  1 |  1  1  0  2
. . . .   x |   2 |   *   * 960 |   0   0   2   0   1   1 |   0   1   0   2   2  1 |  0  1  1  2
------------+-----+-------------+-------------------------+------------------------+------------
o3x . .   . |   3 |   3   0   0 | 320   *   *   *   *   * |   2   2   0   0   0  0 |  1  2  1  0
. x3x .   . |   6 |   3   3   0 |   * 640   *   *   *   * |   1   0   1   1   0  0 |  1  1  0  1
. x . .   x |   4 |   2   0   2 |   *   * 960   *   *   * |   0   1   0   1   1  0 |  0  1  1  1
. . x3o   . |   3 |   0   3   0 |   *   *   * 320   *   * |   0   0   2   0   0  1 |  1  0  0  2
. . x .   x |   4 |   0   2   2 |   *   *   *   * 480   * |   0   0   0   2   0  1 |  0  1  0  2
. . . o4/3x |   4 |   0   0   4 |   *   *   *   *   * 240 |   0   0   0   0   2  1 |  0  0  1  2
------------+-----+-------------+-------------------------+------------------------+------------
o3x3x .   .   12 |  12   6   0 |   4   4   0   0   0   0 | 160   *   *   *   *  * |  1  1  0  0
o3x . .   x    6 |   6   0   3 |   2   0   3   0   0   0 |   * 320   *   *   *  * |  0  1  1  0
. x3x3o   .   12 |   6  12   0 |   0   4   0   4   0   0 |   *   * 160   *   *  * |  1  0  0  1
. x3x .   x   12 |   6   6   6 |   0   2   3   0   3   0 |   *   *   * 320   *  * |  0  1  0  1
. x . o4/3x    8 |   4   0   8 |   0   0   4   0   0   2 |   *   *   *   * 240  * |  0  0  1  1
. . x3o4/3x   24 |   0  24  24 |   0   0   0   8  12   6 |   *   *   *   *   * 40 |  0  0  0  2
------------+-----+-------------+-------------------------+------------------------+------------
o3x3x3o   .   30 |  30  30   0 |  10  20   0  10   0   0 |   5   0   5   0   0  0 | 32  *  *  *
o3x3x .   x   24 |  24  12  12 |   8   8  12   0   6   0 |   2   4   0   4   0  0 |  * 80  *  *
o3x . o4/3x   12 |  12   0  12 |   4   0  12   0   0   3 |   0   4   0   0   3  0 |  *  * 80  *
. x3x3o4/3x  192 |  96 192 192 |   0  64  96  64  96  48 |   0   0  16  32  24  8 |  *  *  * 10

© 2004-2019
top of page