Acronym | azip |
TOCID symbol | (∞)P |
Name | apeirogonal prism |
© | |
Vertex figure | [42,∞] |
Confer | |
External links |
Although this looks just like a mere stripe of squares, it still is a tiling of the complete plane: both seemingly empty half-planes may be considered filled by an inifinite-gon each.
It also is an extension of the general n-gonal prism, thereby becoming a flat tiling.
Incidence matrix according to Dynkin symbol
x xNo (N → ∞) . . . | 2N | 1 2 | 2 1 ------+----+------+---- x . . | 2 | N * | 2 0 . x . | 2 | * 2N | 1 1 ------+----+------+---- x x . | 4 | 2 2 | N * . xNo ♦ N | 0 N | * 2 snubbed forms: s2sNo (N even)
x xNx (N → ∞) . . . | 4N | 1 1 1 | 1 1 1 ------+----+----------+------ x . . | 2 | 2N * * | 1 1 0 . x . | 2 | * 6 * | 1 0 1 . . x | 2 | * * 6 | 0 1 1 ------+----+----------+------ x x . | 4 | 2 2 0 | N * * x . x | 4 | 2 0 2 | * N * . xNx ♦ 2N | 0 N N | * * 2 snubbed forms: s2sNs
xxNoo&#x (N → ∞) → height = 1
({N} || {N})
o.No. | N * | 2 1 0 | 1 2 0
.oN.o | * N | 0 1 2 | 0 2 1
---------+-----+-------+------
x. .. | 2 0 | N * * | 1 1 0
ooNoo&#x | 1 1 | * N * | 0 2 0
.x .. | 0 2 | * * N | 0 1 1
---------+-----+-------+------
x.No. ♦ N 0 | N 0 0 | 1 * *
xx ..&#x | 2 2 | 1 2 1 | * N *
.xN.o ♦ 0 N | 0 0 N | * * 1
xxNxx&#x (N → ∞) → height = 1
({2N} || {2N})
o.No. | 2N * | 1 1 1 0 0 | 1 1 1 0
.oN.o | * 2N | 0 0 1 1 1 | 0 1 1 1
---------+-------+------------+--------
x. .. | 2 0 | N * * * * | 1 1 0 0
.. x. | 2 0 | * N * * * | 1 0 1 0
ooNoo&#x | 1 1 | * * 2N * * | 0 1 1 0
.x .. | 0 2 | * * * N * | 0 1 0 1
.. .x | 0 2 | * * * * N | 0 0 1 1
---------+-------+------------+--------
x.Nx. ♦ 2N 0 | N N 0 0 0 | 1 * * *
xx ..&#x | 2 2 | 1 0 2 1 0 | * N * *
.. xx&#x | 2 2 | 0 1 2 0 1 | * * N *
.xN.x ♦ 0 2N | 0 0 0 N N | * * * 1
:x:&##x (N → ∞) → height = 1 o | 2N | 1 2 | 2 1 --------+----+------+---- x | 2 | N * | 2 0 :o:&#x | 2 | * 2N | 1 1 --------+----+------+---- :x:&#x | 4 | 2 2 | N * :o:&##x ♦ N | 0 N | * 2
:xx:&##x (N → ∞) → height(1,2) = height(2,1') = 1 o. | 2N * | 1 1 1 0 | 1 1 1 .o | * 2N | 0 1 1 1 | 1 1 1 ---------+-------+-----------+------ x. | 2 0 | N * * * | 1 1 0 oo &#x | 1 1 | * 2N * * | 1 0 1 inner :oo:&#x | 1 1 | * * 2N * | 0 1 1 outer .x | 0 2 | * * * N | 1 1 0 ---------+-------+-----------+------ xx &#x | 2 2 | 1 2 0 1 | N * * inner :xx:&#x | 2 2 | 1 0 2 1 | * N * outer :oo:&##x ♦ N N | 0 N N 0 | * * 2
© 2004-2025 | top of page |