Acronym | twau griddip |
Name | twelve-(ortho-)augmented great-rhombated-icosidodecahedral prism |
Dihedral angles |
|
Face vector | 300, 780, 676, 196 |
Confer |
|
For this polychoron the augmentations of the dips of griddip by pepufs is to be done in this orientation ("ortho") that the trips of pepuf adjoin to cubes. – There is a different orientation of the pepufs as well ("gyro"), using then the squippies to adjoin to cubes. This then would result in twagy griddip.
Incidence matrix according to Dynkin symbol
xFx3xox5xxx&#xt → both heights = 1/2 (grid || pseudo (F,x)-srid || grid) o..3o..5o.. & | 240 * | 1 1 1 1 1 0 | 1 1 1 1 1 1 1 1 1 0 | 1 1 1 1 1 1 .o.3.o.5.o. | * 60 | 0 0 0 4 0 2 | 0 0 0 2 4 0 0 0 2 1 | 0 2 0 0 1 2 ------------------+--------+------------------------+----------------------------------+----------------- x.. ... ... & | 2 0 | 120 * * * * * | 1 1 0 0 0 1 0 0 0 0 | 1 0 1 1 0 0 ... x.. ... & | 2 0 | * 120 * * * * | 1 0 1 1 0 0 1 0 0 0 | 1 1 1 0 1 0 ... ... x.. & | 2 0 | * * 120 * * * | 0 1 1 0 1 0 0 1 0 0 | 1 1 0 1 0 1 oo.3oo.5oo.&#x & | 1 1 | * * * 240 * * | 0 0 0 1 1 0 0 0 1 0 | 0 1 0 0 1 1 o.o3o.o5o.o&#x | 2 0 | * * * * 120 * | 0 0 0 0 0 1 1 1 1 0 | 0 0 1 1 1 1 ... ... .x. | 0 2 | * * * * * 60 | 0 0 0 0 2 0 0 0 0 1 | 0 2 0 0 0 1 ------------------+--------+------------------------+----------------------------------+----------------- x..3x.. ... & | 6 0 | 3 3 0 0 0 0 | 40 * * * * * * * * * | 1 0 1 0 0 0 x.. ... x.. & | 4 0 | 2 0 2 0 0 0 | * 60 * * * * * * * * | 1 0 0 1 0 0 ... x..5x.. & | 10 0 | 0 5 5 0 0 0 | * * 24 * * * * * * * | 1 1 0 0 0 0 ... xo. ...&#x & | 2 1 | 0 1 0 2 0 0 | * * * 120 * * * * * * | 0 1 0 0 1 0 ... ... xx.&#x & | 2 2 | 0 0 1 2 0 1 | * * * * 120 * * * * * | 0 1 0 0 0 1 x.x ... ...&#x | 4 0 | 2 0 0 0 2 0 | * * * * * 60 * * * * | 0 0 1 1 0 0 ... x.x ...&#x | 4 0 | 0 2 0 0 2 0 | * * * * * * 60 * * * | 0 0 1 0 1 0 ... ... x.x&#x | 4 0 | 0 0 2 0 2 0 | * * * * * * * 60 * * | 0 0 0 1 0 1 ooo3ooo5ooo&#x | 2 1 | 0 0 0 2 1 0 | * * * * * * * * 120 * | 0 0 0 0 1 1 ... .o.5.x. | 0 5 | 0 0 0 0 0 5 | * * * * * * * * * 12 | 0 2 0 0 0 0 ------------------+--------+------------------------+----------------------------------+----------------- x..3x..5x.. & ♦ 120 0 | 60 60 60 0 0 0 | 20 30 12 0 0 0 0 0 0 0 | 2 * * * * * ... xo.5xx.&#x & ♦ 10 5 | 0 5 5 10 0 5 | 0 0 1 5 5 0 0 0 0 1 | * 24 * * * * x.x3x.x ...&#x ♦ 12 0 | 6 6 0 0 6 0 | 2 0 0 0 0 3 3 0 0 0 | * * 20 * * * x.x ... x.x&#x ♦ 8 0 | 4 0 4 0 4 0 | 0 2 0 0 0 2 0 2 0 0 | * * * 30 * * ... xox ...&#x ♦ 4 1 | 0 2 0 4 2 0 | 0 0 0 2 0 0 1 0 2 0 | * * * * 60 * ... ... xxx&#x ♦ 4 2 | 0 0 2 4 2 1 | 0 0 0 0 2 0 0 1 2 0 | * * * * * 60
xF3xo5xx xo&#zx → height = 0 (tegum sum of griddip and (F,x)-srid) o.3o.5o. o. | 240 * | 1 1 1 1 1 0 | 1 1 1 1 1 1 1 1 1 0 | 1 1 1 1 1 1 .o3.o5.o .o | * 60 | 0 0 0 0 4 2 | 0 0 0 0 0 0 2 4 2 1 | 0 0 0 2 1 2 ---------------+--------+------------------------+----------------------------------+----------------- x. .. .. .. | 2 0 | 120 * * * * * | 1 1 0 1 0 0 0 0 0 0 | 1 1 1 0 0 0 .. x. .. .. | 2 0 | * 120 * * * * | 1 0 1 0 1 0 1 0 0 0 | 1 1 0 1 1 0 .. .. x. .. | 2 0 | * * 120 * * * | 0 1 1 0 0 1 0 1 0 0 | 1 0 1 1 0 1 .. .. .. x. | 2 0 | * * * 120 * * | 0 0 0 1 1 1 0 0 1 0 | 0 1 1 0 1 1 oo3oo5oo oo&#x | 1 1 | * * * * 240 * | 0 0 0 0 0 0 1 1 1 0 | 0 0 0 1 1 1 .. .. .x .. | 0 2 | * * * * * 60 | 0 0 0 0 0 0 0 2 0 1 | 0 0 0 2 0 1 ---------------+--------+------------------------+----------------------------------+----------------- x.3x. .. .. | 6 0 | 3 3 0 0 0 0 | 40 * * * * * * * * * | 1 1 0 0 0 0 x. .. x. .. | 4 0 | 2 0 2 0 0 0 | * 60 * * * * * * * * | 1 0 1 0 0 0 .. x.5x. .. | 10 0 | 0 5 5 0 0 0 | * * 24 * * * * * * * | 1 0 0 1 0 0 x. .. .. x. | 4 0 | 2 0 0 2 0 0 | * * * 60 * * * * * * | 0 1 1 0 0 0 .. x. .. x. | 4 0 | 0 2 0 2 0 0 | * * * * 60 * * * * * | 0 1 0 0 1 0 .. .. x. x. | 4 0 | 0 0 2 2 0 0 | * * * * * 60 * * * * | 0 0 1 0 0 1 .. xo .. ..&#x | 2 1 | 0 1 0 0 2 0 | * * * * * * 120 * * * | 0 0 0 1 1 0 .. .. xx ..&#x | 2 2 | 0 0 1 0 2 1 | * * * * * * * 120 * * | 0 0 0 1 0 1 .. .. .. xo&#x | 2 1 | 0 0 0 1 2 0 | * * * * * * * * 120 * | 0 0 0 0 1 1 .. .o5.x .. | 0 5 | 0 0 0 0 0 5 | * * * * * * * * * 12 | 0 0 0 2 0 0 ---------------+--------+------------------------+----------------------------------+----------------- x.3x.5x. .. ♦ 120 0 | 60 60 60 0 0 0 | 20 30 12 0 0 0 0 0 0 0 | 2 * * * * * x.3x. .. x. ♦ 12 0 | 6 6 0 6 0 0 | 2 0 0 3 3 0 0 0 0 0 | * 20 * * * * x. .. x. x. ♦ 8 0 | 4 0 4 4 0 0 | 0 2 0 2 0 2 0 0 0 0 | * * 30 * * * .. xo5xx ..&#x ♦ 10 5 | 0 5 5 0 10 5 | 0 0 1 0 0 0 5 5 0 1 | * * * 24 * * .. xo .. xo&#x ♦ 4 1 | 0 2 0 2 4 0 | 0 0 0 0 1 0 2 0 2 0 | * * * * 60 * .. .. xx xo&#x ♦ 4 2 | 0 0 2 2 4 1 | 0 0 0 0 0 1 0 2 2 0 | * * * * * 60
© 2004-2024 | top of page |