Acronym twau griddip Name twelve-(ortho-)augmented great-rhombated-icosidodecahedral prism Dihedral angles at {3} between squippy and trip:   arccos(-sqrt[9+3 sqrt(5)]/4) = 172.238756° at {4} between cube and hip:   arccos(-(1+sqrt(5))/sqrt(12)) = 159.094843° at {4} between cube and trip:   arccos(-(1+sqrt(5))/sqrt(12)) = 159.094843° at {4} between pecu and trip:   arccos(-sqrt[(3+sqrt(5))/6]) = 159.094843° at {3} between pecu and squippy:   arccos(-sqrt[7+3 sqrt(5)]/4) = 157.761244° at {4} between hip and squippy:   arccos[-sqrt(5/6)] = 155.905157° at {5} between pecu and pecu:   144° at {10} between grid and pecu:   108° at {4} between cube and grid:   90° at {6} between grid and hip:   90° Confer blend-components: griddip   pepuf   related CRFs: twagy griddip   general polytopal classes: bistratic lace towers

For this polychoron the augmentations of the dips of griddip by pepufs is to be done in this orientation ("ortho") that the trips of pepuf adjoin to cubes. – There is a different orientation of the pepufs as well ("gyro"), using then the squippies to adjoin to cubes. This then would result in twagy griddip.

Incidence matrix according to Dynkin symbol

```xFx3xox5xxx&#xt   → both heights = 1/2
(grid || pseudo (F,x)-srid || grid)

o..3o..5o..     & | 240  * |   1   1   1   1   1  0 |  1  1  1   1   1  1  1  1   1  0 | 1  1  1  1  1  1
.o.3.o.5.o.       |   * 60 |   0   0   0   4   0  2 |  0  0  0   2   4  0  0  0   2  1 | 0  2  0  0  1  2
------------------+--------+------------------------+----------------------------------+-----------------
x.. ... ...     & |   2  0 | 120   *   *   *   *  * |  1  1  0   0   0  1  0  0   0  0 | 1  0  1  1  0  0
... x.. ...     & |   2  0 |   * 120   *   *   *  * |  1  0  1   1   0  0  1  0   0  0 | 1  1  1  0  1  0
... ... x..     & |   2  0 |   *   * 120   *   *  * |  0  1  1   0   1  0  0  1   0  0 | 1  1  0  1  0  1
oo.3oo.5oo.&#x  & |   1  1 |   *   *   * 240   *  * |  0  0  0   1   1  0  0  0   1  0 | 0  1  0  0  1  1
o.o3o.o5o.o&#x    |   2  0 |   *   *   *   * 120  * |  0  0  0   0   0  1  1  1   1  0 | 0  0  1  1  1  1
... ... .x.       |   0  2 |   *   *   *   *   * 60 |  0  0  0   0   2  0  0  0   0  1 | 0  2  0  0  0  1
------------------+--------+------------------------+----------------------------------+-----------------
x..3x.. ...     & |   6  0 |   3   3   0   0   0  0 | 40  *  *   *   *  *  *  *   *  * | 1  0  1  0  0  0
x.. ... x..     & |   4  0 |   2   0   2   0   0  0 |  * 60  *   *   *  *  *  *   *  * | 1  0  0  1  0  0
... x..5x..     & |  10  0 |   0   5   5   0   0  0 |  *  * 24   *   *  *  *  *   *  * | 1  1  0  0  0  0
... xo. ...&#x  & |   2  1 |   0   1   0   2   0  0 |  *  *  * 120   *  *  *  *   *  * | 0  1  0  0  1  0
... ... xx.&#x  & |   2  2 |   0   0   1   2   0  1 |  *  *  *   * 120  *  *  *   *  * | 0  1  0  0  0  1
x.x ... ...&#x    |   4  0 |   2   0   0   0   2  0 |  *  *  *   *   * 60  *  *   *  * | 0  0  1  1  0  0
... x.x ...&#x    |   4  0 |   0   2   0   0   2  0 |  *  *  *   *   *  * 60  *   *  * | 0  0  1  0  1  0
... ... x.x&#x    |   4  0 |   0   0   2   0   2  0 |  *  *  *   *   *  *  * 60   *  * | 0  0  0  1  0  1
ooo3ooo5ooo&#x    |   2  1 |   0   0   0   2   1  0 |  *  *  *   *   *  *  *  * 120  * | 0  0  0  0  1  1
... .o.5.x.       |   0  5 |   0   0   0   0   0  5 |  *  *  *   *   *  *  *  *   * 12 | 0  2  0  0  0  0
------------------+--------+------------------------+----------------------------------+-----------------
x..3x..5x..     & ♦ 120  0 |  60  60  60   0   0  0 | 20 30 12   0   0  0  0  0   0  0 | 2  *  *  *  *  *
... xo.5xx.&#x  & ♦  10  5 |   0   5   5  10   0  5 |  0  0  1   5   5  0  0  0   0  1 | * 24  *  *  *  *
x.x3x.x ...&#x    ♦  12  0 |   6   6   0   0   6  0 |  2  0  0   0   0  3  3  0   0  0 | *  * 20  *  *  *
x.x ... x.x&#x    ♦   8  0 |   4   0   4   0   4  0 |  0  2  0   0   0  2  0  2   0  0 | *  *  * 30  *  *
... xox ...&#x    ♦   4  1 |   0   2   0   4   2  0 |  0  0  0   2   0  0  1  0   2  0 | *  *  *  * 60  *
... ... xxx&#x    ♦   4  2 |   0   0   2   4   2  1 |  0  0  0   0   2  0  0  1   2  0 | *  *  *  *  * 60
```

```xF3xo5xx xo&#zx   → height = 0
(tegum sum of griddip and (F,x)-srid)

o.3o.5o. o.    | 240  * |   1   1   1   1   1  0 |  1  1  1  1  1  1   1   1   1  0 | 1  1  1  1  1  1
.o3.o5.o .o    |   * 60 |   0   0   0   0   4  2 |  0  0  0  0  0  0   2   4   2  1 | 0  0  0  2  1  2
---------------+--------+------------------------+----------------------------------+-----------------
x. .. .. ..    |   2  0 | 120   *   *   *   *  * |  1  1  0  1  0  0   0   0   0  0 | 1  1  1  0  0  0
.. x. .. ..    |   2  0 |   * 120   *   *   *  * |  1  0  1  0  1  0   1   0   0  0 | 1  1  0  1  1  0
.. .. x. ..    |   2  0 |   *   * 120   *   *  * |  0  1  1  0  0  1   0   1   0  0 | 1  0  1  1  0  1
.. .. .. x.    |   2  0 |   *   *   * 120   *  * |  0  0  0  1  1  1   0   0   1  0 | 0  1  1  0  1  1
oo3oo5oo oo&#x |   1  1 |   *   *   *   * 240  * |  0  0  0  0  0  0   1   1   1  0 | 0  0  0  1  1  1
.. .. .x ..    |   0  2 |   *   *   *   *   * 60 |  0  0  0  0  0  0   0   2   0  1 | 0  0  0  2  0  1
---------------+--------+------------------------+----------------------------------+-----------------
x.3x. .. ..    |   6  0 |   3   3   0   0   0  0 | 40  *  *  *  *  *   *   *   *  * | 1  1  0  0  0  0
x. .. x. ..    |   4  0 |   2   0   2   0   0  0 |  * 60  *  *  *  *   *   *   *  * | 1  0  1  0  0  0
.. x.5x. ..    |  10  0 |   0   5   5   0   0  0 |  *  * 24  *  *  *   *   *   *  * | 1  0  0  1  0  0
x. .. .. x.    |   4  0 |   2   0   0   2   0  0 |  *  *  * 60  *  *   *   *   *  * | 0  1  1  0  0  0
.. x. .. x.    |   4  0 |   0   2   0   2   0  0 |  *  *  *  * 60  *   *   *   *  * | 0  1  0  0  1  0
.. .. x. x.    |   4  0 |   0   0   2   2   0  0 |  *  *  *  *  * 60   *   *   *  * | 0  0  1  0  0  1
.. xo .. ..&#x |   2  1 |   0   1   0   0   2  0 |  *  *  *  *  *  * 120   *   *  * | 0  0  0  1  1  0
.. .. xx ..&#x |   2  2 |   0   0   1   0   2  1 |  *  *  *  *  *  *   * 120   *  * | 0  0  0  1  0  1
.. .. .. xo&#x |   2  1 |   0   0   0   1   2  0 |  *  *  *  *  *  *   *   * 120  * | 0  0  0  0  1  1
.. .o5.x ..    |   0  5 |   0   0   0   0   0  5 |  *  *  *  *  *  *   *   *   * 12 | 0  0  0  2  0  0
---------------+--------+------------------------+----------------------------------+-----------------
x.3x.5x. ..    ♦ 120  0 |  60  60  60   0   0  0 | 20 30 12  0  0  0   0   0   0  0 | 2  *  *  *  *  *
x.3x. .. x.    ♦  12  0 |   6   6   0   6   0  0 |  2  0  0  3  3  0   0   0   0  0 | * 20  *  *  *  *
x. .. x. x.    ♦   8  0 |   4   0   4   4   0  0 |  0  2  0  2  0  2   0   0   0  0 | *  * 30  *  *  *
.. xo5xx ..&#x ♦  10  5 |   0   5   5   0  10  5 |  0  0  1  0  0  0   5   5   0  1 | *  *  * 24  *  *
.. xo .. xo&#x ♦   4  1 |   0   2   0   2   4  0 |  0  0  0  0  1  0   2   0   2  0 | *  *  *  * 60  *
.. .. xx xo&#x ♦   4  2 |   0   0   2   2   4  1 |  0  0  0  0  0  1   0   2   2  0 | *  *  *  *  * 60
```

 © 2004-2021 top of page