Acronym twau griddip
Name twelve-(ortho-)augmented great-rhombated-icosidodecahedral prism
Dihedral angles
  • at {3} between squippy and trip:   arccos(-sqrt[9+3 sqrt(5)]/4) = 172.238756°
  • at {4} between cube and hip:   arccos(-(1+sqrt(5))/sqrt(12)) = 159.094843°
  • at {4} between cube and trip:   arccos(-(1+sqrt(5))/sqrt(12)) = 159.094843°
  • at {4} between pecu and trip:   arccos(-sqrt[(3+sqrt(5))/6]) = 159.094843°
  • at {3} between pecu and squippy:   arccos(-sqrt[7+3 sqrt(5)]/4) = 157.761244°
  • at {4} between hip and squippy:   arccos[-sqrt(5/6)] = 155.905157°
  • at {5} between pecu and pecu:   144°
  • at {10} between grid and pecu:   108°
  • at {4} between cube and grid:   90°
  • at {6} between grid and hip:   90°
Face vector 300, 780, 676, 196
Confer
blend-components:
griddip   pepuf  
related CRFs:
twagy griddip  
general polytopal classes:
bistratic lace towers  

For this polychoron the augmentations of the dips of griddip by pepufs is to be done in this orientation ("ortho") that the trips of pepuf adjoin to cubes. – There is a different orientation of the pepufs as well ("gyro"), using then the squippies to adjoin to cubes. This then would result in twagy griddip.


Incidence matrix according to Dynkin symbol

xFx3xox5xxx&#xt   → both heights = 1/2
(grid || pseudo (F,x)-srid || grid)

o..3o..5o..     & | 240  * |   1   1   1   1   1  0 |  1  1  1   1   1  1  1  1   1  0 | 1  1  1  1  1  1
.o.3.o.5.o.       |   * 60 |   0   0   0   4   0  2 |  0  0  0   2   4  0  0  0   2  1 | 0  2  0  0  1  2
------------------+--------+------------------------+----------------------------------+-----------------
x.. ... ...     & |   2  0 | 120   *   *   *   *  * |  1  1  0   0   0  1  0  0   0  0 | 1  0  1  1  0  0
... x.. ...     & |   2  0 |   * 120   *   *   *  * |  1  0  1   1   0  0  1  0   0  0 | 1  1  1  0  1  0
... ... x..     & |   2  0 |   *   * 120   *   *  * |  0  1  1   0   1  0  0  1   0  0 | 1  1  0  1  0  1
oo.3oo.5oo.&#x  & |   1  1 |   *   *   * 240   *  * |  0  0  0   1   1  0  0  0   1  0 | 0  1  0  0  1  1
o.o3o.o5o.o&#x    |   2  0 |   *   *   *   * 120  * |  0  0  0   0   0  1  1  1   1  0 | 0  0  1  1  1  1
... ... .x.       |   0  2 |   *   *   *   *   * 60 |  0  0  0   0   2  0  0  0   0  1 | 0  2  0  0  0  1
------------------+--------+------------------------+----------------------------------+-----------------
x..3x.. ...     & |   6  0 |   3   3   0   0   0  0 | 40  *  *   *   *  *  *  *   *  * | 1  0  1  0  0  0
x.. ... x..     & |   4  0 |   2   0   2   0   0  0 |  * 60  *   *   *  *  *  *   *  * | 1  0  0  1  0  0
... x..5x..     & |  10  0 |   0   5   5   0   0  0 |  *  * 24   *   *  *  *  *   *  * | 1  1  0  0  0  0
... xo. ...&#x  & |   2  1 |   0   1   0   2   0  0 |  *  *  * 120   *  *  *  *   *  * | 0  1  0  0  1  0
... ... xx.&#x  & |   2  2 |   0   0   1   2   0  1 |  *  *  *   * 120  *  *  *   *  * | 0  1  0  0  0  1
x.x ... ...&#x    |   4  0 |   2   0   0   0   2  0 |  *  *  *   *   * 60  *  *   *  * | 0  0  1  1  0  0
... x.x ...&#x    |   4  0 |   0   2   0   0   2  0 |  *  *  *   *   *  * 60  *   *  * | 0  0  1  0  1  0
... ... x.x&#x    |   4  0 |   0   0   2   0   2  0 |  *  *  *   *   *  *  * 60   *  * | 0  0  0  1  0  1
ooo3ooo5ooo&#x    |   2  1 |   0   0   0   2   1  0 |  *  *  *   *   *  *  *  * 120  * | 0  0  0  0  1  1
... .o.5.x.       |   0  5 |   0   0   0   0   0  5 |  *  *  *   *   *  *  *  *   * 12 | 0  2  0  0  0  0
------------------+--------+------------------------+----------------------------------+-----------------
x..3x..5x..     &  120  0 |  60  60  60   0   0  0 | 20 30 12   0   0  0  0  0   0  0 | 2  *  *  *  *  *
... xo.5xx.&#x  &   10  5 |   0   5   5  10   0  5 |  0  0  1   5   5  0  0  0   0  1 | * 24  *  *  *  *
x.x3x.x ...&#x      12  0 |   6   6   0   0   6  0 |  2  0  0   0   0  3  3  0   0  0 | *  * 20  *  *  *
x.x ... x.x&#x       8  0 |   4   0   4   0   4  0 |  0  2  0   0   0  2  0  2   0  0 | *  *  * 30  *  *
... xox ...&#x       4  1 |   0   2   0   4   2  0 |  0  0  0   2   0  0  1  0   2  0 | *  *  *  * 60  *
... ... xxx&#x       4  2 |   0   0   2   4   2  1 |  0  0  0   0   2  0  0  1   2  0 | *  *  *  *  * 60

xF3xo5xx xo&#zx   → height = 0
(tegum sum of griddip and (F,x)-srid)

o.3o.5o. o.    | 240  * |   1   1   1   1   1  0 |  1  1  1  1  1  1   1   1   1  0 | 1  1  1  1  1  1
.o3.o5.o .o    |   * 60 |   0   0   0   0   4  2 |  0  0  0  0  0  0   2   4   2  1 | 0  0  0  2  1  2
---------------+--------+------------------------+----------------------------------+-----------------
x. .. .. ..    |   2  0 | 120   *   *   *   *  * |  1  1  0  1  0  0   0   0   0  0 | 1  1  1  0  0  0
.. x. .. ..    |   2  0 |   * 120   *   *   *  * |  1  0  1  0  1  0   1   0   0  0 | 1  1  0  1  1  0
.. .. x. ..    |   2  0 |   *   * 120   *   *  * |  0  1  1  0  0  1   0   1   0  0 | 1  0  1  1  0  1
.. .. .. x.    |   2  0 |   *   *   * 120   *  * |  0  0  0  1  1  1   0   0   1  0 | 0  1  1  0  1  1
oo3oo5oo oo&#x |   1  1 |   *   *   *   * 240  * |  0  0  0  0  0  0   1   1   1  0 | 0  0  0  1  1  1
.. .. .x ..    |   0  2 |   *   *   *   *   * 60 |  0  0  0  0  0  0   0   2   0  1 | 0  0  0  2  0  1
---------------+--------+------------------------+----------------------------------+-----------------
x.3x. .. ..    |   6  0 |   3   3   0   0   0  0 | 40  *  *  *  *  *   *   *   *  * | 1  1  0  0  0  0
x. .. x. ..    |   4  0 |   2   0   2   0   0  0 |  * 60  *  *  *  *   *   *   *  * | 1  0  1  0  0  0
.. x.5x. ..    |  10  0 |   0   5   5   0   0  0 |  *  * 24  *  *  *   *   *   *  * | 1  0  0  1  0  0
x. .. .. x.    |   4  0 |   2   0   0   2   0  0 |  *  *  * 60  *  *   *   *   *  * | 0  1  1  0  0  0
.. x. .. x.    |   4  0 |   0   2   0   2   0  0 |  *  *  *  * 60  *   *   *   *  * | 0  1  0  0  1  0
.. .. x. x.    |   4  0 |   0   0   2   2   0  0 |  *  *  *  *  * 60   *   *   *  * | 0  0  1  0  0  1
.. xo .. ..&#x |   2  1 |   0   1   0   0   2  0 |  *  *  *  *  *  * 120   *   *  * | 0  0  0  1  1  0
.. .. xx ..&#x |   2  2 |   0   0   1   0   2  1 |  *  *  *  *  *  *   * 120   *  * | 0  0  0  1  0  1
.. .. .. xo&#x |   2  1 |   0   0   0   1   2  0 |  *  *  *  *  *  *   *   * 120  * | 0  0  0  0  1  1
.. .o5.x ..    |   0  5 |   0   0   0   0   0  5 |  *  *  *  *  *  *   *   *   * 12 | 0  0  0  2  0  0
---------------+--------+------------------------+----------------------------------+-----------------
x.3x.5x. ..     120  0 |  60  60  60   0   0  0 | 20 30 12  0  0  0   0   0   0  0 | 2  *  *  *  *  *
x.3x. .. x.      12  0 |   6   6   0   6   0  0 |  2  0  0  3  3  0   0   0   0  0 | * 20  *  *  *  *
x. .. x. x.       8  0 |   4   0   4   4   0  0 |  0  2  0  2  0  2   0   0   0  0 | *  * 30  *  *  *
.. xo5xx ..&#x   10  5 |   0   5   5   0  10  5 |  0  0  1  0  0  0   5   5   0  1 | *  *  * 24  *  *
.. xo .. xo&#x    4  1 |   0   2   0   2   4  0 |  0  0  0  0  1  0   2   0   2  0 | *  *  *  * 60  *
.. .. xx xo&#x    4  2 |   0   0   2   2   4  1 |  0  0  0  0  0  1   0   2   2  0 | *  *  *  *  * 60

© 2004-2024
top of page