Acronym griddip, K-4.150 Name great-rhombicosidodecahedron prism Segmentochoron display Cross sections ` ©` Circumradius sqrt[8+3 sqrt(5)] = 3.835128 Dihedral angles at {4} between cube and hip:   arccos(-(1+sqrt(5))/sqrt(12)) = 159.094843° at {4} between cube and dip:   arccos(-sqrt[(5+sqrt(5))/10]) = 148.282526° at {4} between dip and hip:   arccos(-sqrt[(5+2 sqrt(5))/15]) = 142.622632° at {4} between cube and grid:   90° at {10} between dip and grid:   90° at {6} between grid and hip:   90° Confer general polytopal classes: segmentochora Externallinks

As abstract polytope griddip is isomorphic to gaquatiddip, thereby replacing decagons by decagrams, resp. replacing grid by gaquatid and dip by stiddip.

Incidence matrix according to Dynkin symbol

```x x3x5x

. . . . | 240 |   1   1   1   1 |  1  1  1  1  1  1 |  1  1  1 1
--------+-----+-----------------+-------------------+-----------
x . . . |   2 | 120   *   *   * |  1  1  1  0  0  0 |  1  1  1 0
. x . . |   2 |   * 120   *   * |  1  0  0  1  1  0 |  1  1  0 1
. . x . |   2 |   *   * 120   * |  0  1  0  1  0  1 |  1  0  1 1
. . . x |   2 |   *   *   * 120 |  0  0  1  0  1  1 |  0  1  1 1
--------+-----+-----------------+-------------------+-----------
x x . . |   4 |   2   2   0   0 | 60  *  *  *  *  * |  1  1  0 0
x . x . |   4 |   2   0   2   0 |  * 60  *  *  *  * |  1  0  1 0
x . . x |   4 |   2   0   0   2 |  *  * 60  *  *  * |  0  1  1 0
. x3x . |   6 |   0   3   3   0 |  *  *  * 40  *  * |  1  0  0 1
. x . x |   4 |   0   2   0   2 |  *  *  *  * 60  * |  0  1  0 1
. . x5x |  10 |   0   0   5   5 |  *  *  *  *  * 24 |  0  0  1 1
--------+-----+-----------------+-------------------+-----------
x x3x . ♦  12 |   6   6   6   0 |  3  3  0  2  0  0 | 20  *  * *
x x . x ♦   8 |   4   4   0   4 |  2  0  2  0  2  0 |  * 30  * *
x . x5x ♦  20 |  10   0  10  10 |  0  5  5  0  0  2 |  *  * 12 *
. x3x5x ♦ 120 |   0  60  60  60 |  0  0  0 20 30 12 |  *  *  * 2

snubbed forms: x s3s5s, s2s3s5s
```

```xx3xx5xx&#x   → height = 1
(grid || grid)

o.3o.5o.    | 120   * |  1  1  1   1  0  0  0 |  1  1  1  1  1  1  0  0  0 | 1  1  1  1 0
.o3.o5.o    |   * 120 |  0  0  0   1  1  1  1 |  0  0  0  1  1  1  1  1  1 | 0  1  1  1 1
------------+---------+-----------------------+----------------------------+-------------
x. .. ..    |   2   0 | 60  *  *   *  *  *  * |  1  1  0  1  0  0  0  0  0 | 1  1  1  0 0
.. x. ..    |   2   0 |  * 60  *   *  *  *  * |  1  0  1  0  1  0  0  0  0 | 1  1  0  1 0
.. .. x.    |   2   0 |  *  * 60   *  *  *  * |  0  1  1  0  0  1  0  0  0 | 1  0  1  1 0
oo3oo5oo&#x |   1   1 |  *  *  * 120  *  *  * |  0  0  0  1  1  1  0  0  0 | 0  1  1  1 0
.x .. ..    |   0   2 |  *  *  *   * 60  *  * |  0  0  0  1  0  0  1  1  0 | 0  1  1  0 1
.. .x ..    |   0   2 |  *  *  *   *  * 60  * |  0  0  0  0  1  0  1  0  1 | 0  1  0  1 1
.. .. .x    |   0   2 |  *  *  *   *  *  * 60 |  0  0  0  0  0  1  0  1  1 | 0  0  1  1 1
------------+---------+-----------------------+----------------------------+-------------
x.3x. ..    |   6   0 |  3  3  0   0  0  0  0 | 20  *  *  *  *  *  *  *  * | 1  1  0  0 0
x. .. x.    |   4   0 |  2  0  2   0  0  0  0 |  * 30  *  *  *  *  *  *  * | 1  0  1  0 0
.. x.5x.    |  10   0 |  0  5  5   0  0  0  0 |  *  * 12  *  *  *  *  *  * | 1  0  0  1 0
xx .. ..&#x |   2   2 |  1  0  0   2  1  0  0 |  *  *  * 60  *  *  *  *  * | 0  1  1  0 0
.. xx ..&#x |   2   2 |  0  1  0   2  0  1  0 |  *  *  *  * 60  *  *  *  * | 0  1  0  1 0
.. .. xx&#x |   2   2 |  0  0  1   2  0  0  1 |  *  *  *  *  * 60  *  *  * | 0  0  1  1 0
.x3.x ..    |   0   6 |  0  0  0   0  3  3  0 |  *  *  *  *  *  * 20  *  * | 0  1  0  0 1
.x .. .x    |   0   4 |  0  0  0   0  2  0  2 |  *  *  *  *  *  *  * 30  * | 0  0  1  0 1
.. .x5.x    |   0  10 |  0  0  0   0  0  5  5 |  *  *  *  *  *  *  *  * 12 | 0  0  0  1 1
------------+---------+-----------------------+----------------------------+-------------
x.3x.5x.    ♦ 120   0 | 60 60 60   0  0  0  0 | 20 30 12  0  0  0  0  0  0 | 1  *  *  * *
xx3xx ..&#x ♦   6   6 |  3  3  0   6  3  3  0 |  1  0  0  3  3  0  1  0  0 | * 20  *  * *
xx .. xx&#x ♦   4   4 |  2  0  2   4  2  0  2 |  0  1  0  2  0  2  0  1  0 | *  * 30  * *
.. xx5xx&#x ♦  10  10 |  0  5  5  10  0  5  5 |  0  0  1  0  5  5  0  0  1 | *  *  * 12 *
.x3.x5.x    ♦   0 120 |  0  0  0   0 60 60 60 |  0  0  0  0  0  0 20 30 12 | *  *  *  * 1
```

 © 2004-2021 top of page