| Acronym | griddip, K-4.150 | 
| Name | great-rhombicosidodecahedron prism | 
| Segmentochoron display / VRML | 
 | 
| Cross sections | 
 | 
| Circumradius | sqrt[8+3 sqrt(5)] = 3.835128 | 
| Dihedral angles | 
 | 
| Face vector | 240, 480, 304, 64 | 
| Confer | 
 | 
| External links |       | 
As abstract polytope griddip is isomorphic to gaquatiddip, thereby replacing decagons by decagrams, resp. replacing grid by gaquatid and dip by stiddip.
Incidence matrix according to Dynkin symbol
x x3x5x . . . . | 240 | 1 1 1 1 | 1 1 1 1 1 1 | 1 1 1 1 --------+-----+-----------------+-------------------+----------- x . . . | 2 | 120 * * * | 1 1 1 0 0 0 | 1 1 1 0 . x . . | 2 | * 120 * * | 1 0 0 1 1 0 | 1 1 0 1 . . x . | 2 | * * 120 * | 0 1 0 1 0 1 | 1 0 1 1 . . . x | 2 | * * * 120 | 0 0 1 0 1 1 | 0 1 1 1 --------+-----+-----------------+-------------------+----------- x x . . | 4 | 2 2 0 0 | 60 * * * * * | 1 1 0 0 x . x . | 4 | 2 0 2 0 | * 60 * * * * | 1 0 1 0 x . . x | 4 | 2 0 0 2 | * * 60 * * * | 0 1 1 0 . x3x . | 6 | 0 3 3 0 | * * * 40 * * | 1 0 0 1 . x . x | 4 | 0 2 0 2 | * * * * 60 * | 0 1 0 1 . . x5x | 10 | 0 0 5 5 | * * * * * 24 | 0 0 1 1 --------+-----+-----------------+-------------------+----------- x x3x . ♦ 12 | 6 6 6 0 | 3 3 0 2 0 0 | 20 * * * x x . x ♦ 8 | 4 4 0 4 | 2 0 2 0 2 0 | * 30 * * x . x5x ♦ 20 | 10 0 10 10 | 0 5 5 0 0 2 | * * 12 * . x3x5x ♦ 120 | 0 60 60 60 | 0 0 0 20 30 12 | * * * 2 snubbed forms: x s3s5s, s2s3s5s
xx3xx5xx&#x   → height = 1
(grid || grid)
o.3o.5o.    | 120   * |  1  1  1   1  0  0  0 |  1  1  1  1  1  1  0  0  0 | 1  1  1  1 0
.o3.o5.o    |   * 120 |  0  0  0   1  1  1  1 |  0  0  0  1  1  1  1  1  1 | 0  1  1  1 1
------------+---------+-----------------------+----------------------------+-------------
x. .. ..    |   2   0 | 60  *  *   *  *  *  * |  1  1  0  1  0  0  0  0  0 | 1  1  1  0 0
.. x. ..    |   2   0 |  * 60  *   *  *  *  * |  1  0  1  0  1  0  0  0  0 | 1  1  0  1 0
.. .. x.    |   2   0 |  *  * 60   *  *  *  * |  0  1  1  0  0  1  0  0  0 | 1  0  1  1 0
oo3oo5oo&#x |   1   1 |  *  *  * 120  *  *  * |  0  0  0  1  1  1  0  0  0 | 0  1  1  1 0
.x .. ..    |   0   2 |  *  *  *   * 60  *  * |  0  0  0  1  0  0  1  1  0 | 0  1  1  0 1
.. .x ..    |   0   2 |  *  *  *   *  * 60  * |  0  0  0  0  1  0  1  0  1 | 0  1  0  1 1
.. .. .x    |   0   2 |  *  *  *   *  *  * 60 |  0  0  0  0  0  1  0  1  1 | 0  0  1  1 1
------------+---------+-----------------------+----------------------------+-------------
x.3x. ..    |   6   0 |  3  3  0   0  0  0  0 | 20  *  *  *  *  *  *  *  * | 1  1  0  0 0
x. .. x.    |   4   0 |  2  0  2   0  0  0  0 |  * 30  *  *  *  *  *  *  * | 1  0  1  0 0
.. x.5x.    |  10   0 |  0  5  5   0  0  0  0 |  *  * 12  *  *  *  *  *  * | 1  0  0  1 0
xx .. ..&#x |   2   2 |  1  0  0   2  1  0  0 |  *  *  * 60  *  *  *  *  * | 0  1  1  0 0
.. xx ..&#x |   2   2 |  0  1  0   2  0  1  0 |  *  *  *  * 60  *  *  *  * | 0  1  0  1 0
.. .. xx&#x |   2   2 |  0  0  1   2  0  0  1 |  *  *  *  *  * 60  *  *  * | 0  0  1  1 0
.x3.x ..    |   0   6 |  0  0  0   0  3  3  0 |  *  *  *  *  *  * 20  *  * | 0  1  0  0 1
.x .. .x    |   0   4 |  0  0  0   0  2  0  2 |  *  *  *  *  *  *  * 30  * | 0  0  1  0 1
.. .x5.x    |   0  10 |  0  0  0   0  0  5  5 |  *  *  *  *  *  *  *  * 12 | 0  0  0  1 1
------------+---------+-----------------------+----------------------------+-------------
x.3x.5x.    ♦ 120   0 | 60 60 60   0  0  0  0 | 20 30 12  0  0  0  0  0  0 | 1  *  *  * *
xx3xx ..&#x ♦   6   6 |  3  3  0   6  3  3  0 |  1  0  0  3  3  0  1  0  0 | * 20  *  * *
xx .. xx&#x ♦   4   4 |  2  0  2   4  2  0  2 |  0  1  0  2  0  2  0  1  0 | *  * 30  * *
.. xx5xx&#x ♦  10  10 |  0  5  5  10  0  5  5 |  0  0  1  0  5  5  0  0  1 | *  *  * 12 *
.x3.x5.x    ♦   0 120 |  0  0  0   0 60 60 60 |  0  0  0  0  0  0 20 30 12 | *  *  *  * 1
| © 2004-2025 | top of page |