Acronym | twagy griddip |
Name | twelve-gyro-augmented great-rhombated-icosidodecahedral prism |
Dihedral angles |
|
Face vector | 300, 780, 676, 196 |
Confer |
|
For this polychoron the augmentations of the dips of griddip by pepufs is to be done in this orientation ("gyro") that the squippies of pepuf adjoin to cubes. – There is a different orientation of the pepufs as well ("ortho"), using then the trips to adjoin to cubes. This then would result in twau griddip.
Incidence matrix according to Dynkin symbol
xb3xx5xo xo&#zx → height = 0, where b = (5+3 sqrt(5))/5 = 2.341641 (tegum sum of griddip and (b,x)-ti) o.3o.5o. o. | 240 * | 1 1 1 1 1 0 | 1 1 1 1 1 1 1 1 1 0 | 1 1 1 1 1 1 .o3.o5.o .o | * 60 | 0 0 0 0 4 2 | 0 0 0 0 0 0 4 2 2 1 | 0 0 0 2 2 1 ---------------+--------+------------------------+----------------------------------+----------------- x. .. .. .. | 2 0 | 120 * * * * * | 1 1 1 0 0 0 0 0 0 0 | 1 1 1 0 0 0 .. x. .. .. | 2 0 | * 120 * * * * | 1 0 0 1 1 0 1 0 0 0 | 1 1 0 1 1 0 .. .. x. .. | 2 0 | * * 120 * * * | 0 1 0 1 0 1 0 1 0 0 | 1 0 1 1 0 1 .. .. .. x. | 2 0 | * * * 120 * * | 0 0 1 0 1 1 0 0 1 0 | 0 1 1 0 1 1 oo3oo5oo oo&#x | 1 1 | * * * * 240 * | 0 0 0 0 0 0 1 1 1 0 | 0 0 0 1 1 1 .. .x .. .. | 0 2 | * * * * * 60 | 0 0 0 0 0 0 2 0 0 1 | 0 0 0 2 1 0 ---------------+--------+------------------------+----------------------------------+----------------- x.3x. .. .. | 6 0 | 3 3 0 0 0 0 | 40 * * * * * * * * * | 1 1 0 0 0 0 x. .. x. .. | 4 0 | 2 0 2 0 0 0 | * 60 * * * * * * * * | 1 0 1 0 0 0 x. .. .. x. | 4 0 | 2 0 0 2 0 0 | * * 60 * * * * * * * | 0 1 1 0 0 0 .. x.5x. .. | 10 0 | 0 5 5 0 0 0 | * * * 24 * * * * * * | 1 0 0 1 0 0 .. x. .. x. | 4 0 | 0 2 0 2 0 0 | * * * * 60 * * * * * | 0 1 0 0 1 0 .. .. x. x. | 4 0 | 0 0 2 2 0 0 | * * * * * 60 * * * * | 0 0 1 0 0 1 .. xx .. ..&#x | 2 2 | 0 1 0 0 2 1 | * * * * * * 120 * * * | 0 0 0 1 1 0 .. .. xo ..&#x | 2 1 | 0 0 1 0 2 0 | * * * * * * * 120 * * | 0 0 0 1 0 1 .. .. .. xo&#x | 2 1 | 0 0 0 1 2 0 | * * * * * * * * 120 * | 0 0 0 0 1 1 .. .x5.o .. | 0 5 | 0 0 0 0 0 5 | * * * * * * * * * 12 | 0 0 0 2 0 0 ---------------+--------+------------------------+----------------------------------+----------------- x.3x.5x. .. ♦ 120 0 | 60 60 60 0 0 0 | 20 30 0 12 0 0 0 0 0 0 | 2 * * * * * x.3x. .. x. ♦ 12 0 | 6 6 0 6 0 0 | 2 0 3 0 3 0 0 0 0 0 | * 20 * * * * x. .. x. x. ♦ 8 0 | 4 0 4 4 0 0 | 0 2 2 0 0 2 0 0 0 0 | * * 30 * * * .. xx5xo ..&#x ♦ 10 5 | 0 5 5 0 10 5 | 0 0 0 1 0 0 5 5 0 1 | * * * 24 * * .. xx .. xo&#x ♦ 4 2 | 0 2 0 2 4 1 | 0 0 0 0 1 0 2 0 2 0 | * * * * 60 * .. .. xo xo&#x ♦ 4 1 | 0 0 2 2 4 0 | 0 0 0 0 0 1 0 2 2 0 | * * * * * 60
© 2004-2025 | top of page |