Acronym trahexpy Name trahex pyramid,vertex pyramid of barz Circumradius sqrt(3/2) = 1.224745 Confer uniform relative: barz   general polytopal classes: segmentoexa

Incidence matrix according to Dynkin symbol

```ox3oo ox3oo3oo4oo&#x   → height = 1/sqrt(6) = 0.408248
(pt || trahex)

o.3o. o.3o.3o.4o.    | 1  * ♦ 24  0  0 | 24 72 0  0  0 | 8 72 96  0  0  0 | 24 96 48  0  0 0 | 32 48 3  0 0 | 16 3 0
.o3.o .o3.o3.o4.o    | * 24 |  1  2  6 |  2  6 1 12 12 | 1 12 12  6 24  8 |  6 24  8 12 16 1 | 12 16 1  8 2 |  8 2 1
---------------------+------+----------+---------------+------------------+------------------+--------------+-------
oo3oo oo3oo3oo4oo&#x | 1  1 | 24  *  * |  2  6 0  0  0 | 1 12 12  0  0  0 |  6 24  8  0  0 0 | 12 16 1  0 0 |  8 2 0
.x .. .. .. .. ..    | 0  2 |  * 24  * |  1  0 1  6  0 | 1  6  0  6 12  0 |  6 12  0 12  8 0 | 12  8 0  8 1 |  8 1 1
.. .. .x .. .. ..    | 0  2 |  *  * 72 |  0  1 0  2  4 | 0  2  4  1  8  4 |  1  8  4  4  6 1 |  4  8 1  4 2 |  4 2 1
---------------------+------+----------+---------------+------------------+------------------+--------------+-------
ox .. .. .. .. ..&#x | 1  2 |  2  1  0 | 24  * *  *  * | 1  6  0  0  0  0 |  6 12  0  0  0 0 | 12  8 0  0 0 |  8 1 0
.. .. ox .. .. ..&#x | 1  2 |  2  0  1 |  * 72 *  *  * | 0  2  4  0  0  0 |  1  8  4  0  0 0 |  4  8 1  0 0 |  4 2 0
.x3.o .. .. .. ..    | 0  3 |  0  3  0 |  *  * 8  *  * | 1  0  0  6  0  0 |  6  0  0 12  0 0 | 12  0 0  8 0 |  8 0 1
.x  . .x .. .. ..    | 0  4 |  0  2  2 |  *  * * 72  * | 0  1  0  1  4  0 |  1  4  0  4  4 0 |  4  4 0  4 1 |  4 1 1
.. .. .x3.o .. ..    | 0  3 |  0  0  3 |  *  * *  * 96 | 0  0  1  0  2  2 |  0  2  2  1  4 1 |  1  4 1  2 2 |  2 2 1
---------------------+------+----------+---------------+------------------+------------------+--------------+-------
ox3oo .. .. .. ..&#x ♦ 1  3 |  3  3  0 |  3  0 1  0  0 | 8  *  *  *  *  * ♦  6  0  0  0  0 0 | 12  0 0  0 0 |  8 0 0
ox .. ox .. .. ..&#x ♦ 1  4 |  4  2  2 |  2  2 0  1  0 | * 72  *  *  *  * |  1  4  0  0  0 0 |  4  4 0  0 0 |  4 1 0
.. .. ox3oo .. ..&#x ♦ 1  3 |  3  0  3 |  0  3 0  0  1 | *  * 96  *  *  * |  0  2  2  0  0 0 |  1  4 1  0 0 |  2 2 0
.x3.o .x .. .. ..    ♦ 0  6 |  0  6  3 |  0  0 2  3  0 | *  *  * 24  *  * |  1  0  0  4  0 0 |  4  0 0  4 0 |  4 0 1
.x .. .x3.o .. ..    ♦ 0  6 |  0  3  6 |  0  0 0  3  2 | *  *  *  * 96  * |  0  1  0  1  2 0 |  1  2 0  2 1 |  2 1 1
.. .. .x3.o3.o ..    ♦ 0  4 |  0  0  6 |  0  0 0  0  4 | *  *  *  *  * 48 |  0  0  1  0  2 1 |  0  2 1  1 2 |  1 2 1
---------------------+------+----------+---------------+------------------+------------------+--------------+-------
ox3oo ox .. .. ..&#x ♦ 1  6 |  6  6  3 |  6  3 2  3  0 | 2  3  0  1  0  0 | 24  *  *  *  * * |  4  0 0  0 0 |  4 0 0
ox .. ox3oo .. ..&#x ♦ 1  6 |  6  3  6 |  3  6 0  3  2 | 0  3  2  0  1  0 |  * 96  *  *  * * |  1  2 0  0 0 |  2 1 0
.. .. ox3oo3oo ..&#x ♦ 1  4 |  4  0  6 |  0  6 0  0  4 | 0  0  4  0  0  1 |  *  * 48  *  * * |  0  2 1  0 0 |  1 2 0
.x3.o .x3.o .. ..    ♦ 0  9 |  0  9  9 |  0  0 3  9  3 | 0  0  0  3  3  0 |  *  *  * 32  * * |  1  0 0  2 0 |  2 0 1
.x .. .x3.o3.o ..    ♦ 0  8 |  0  4 12 |  0  0 0  6  8 | 0  0  0  0  4  2 |  *  *  *  * 48 * |  0  1 0  1 1 |  1 1 1
.. .. .x3.o3.o4.o    ♦ 0  8 |  0  0 24 |  0  0 0  0 32 | 0  0  0  0  0 16 |  *  *  *  *  * 3 |  0  0 1  0 2 |  0 2 1
---------------------+------+----------+---------------+------------------+------------------+--------------+-------
ox3oo ox3oo .. ..&#x ♦ 1  9 |  9  9  9 |  9  9 3  9  3 | 3  9  3  3  3  0 |  3  3  0  1  0 0 | 32  * *  * * |  2 0 0
ox .. ox3oo3oo ..&#x ♦ 1  8 |  8  4 12 |  4 12 0  6  8 | 0  6  8  0  4  2 |  0  4  2  0  1 0 |  * 48 *  * * |  1 1 0
.. .. ox3oo3oo4oo&#x ♦ 1  8 |  8  0 24 |  0 24 0  0 32 | 0  0 32  0  0 16 |  0  0 16  0  0 1 |  *  * 3  * * |  0 2 0
.x3.o .x3.o3.o ..    ♦ 0 12 |  0 12 18 |  0  0 4 18 12 | 0  0  0  6 12  3 |  0  0  0  4  3 0 |  *  * * 16 * |  1 0 1
.x .. .x3.o3.o4.o    ♦ 0 16 |  0  8 48 |  0  0 0 24 64 | 0  0  0  0 32 32 |  0  0  0  0 16 2 |  *  * *  * 3 |  0 1 1
---------------------+------+----------+---------------+------------------+------------------+--------------+-------
ox3oo ox3oo3oo ..&#x ♦ 1 12 | 12 12 18 | 12 18 4 18 12 | 4 18 12  6 12  3 |  6 12  3  4  3 0 |  4  3 0  1 0 | 16 * *
ox .. ox3oo3oo4oo&#x ♦ 1 16 | 16  8 48 |  8 48 0 24 64 | 0 24 64  0 32 32 |  0 32 32  0 16 2 |  0 16 2  0 1 |  * 3 *
.x3.o .x3.o3.o4.o    ♦ 0 24 |  0 24 72 |  0  0 8 72 96 | 0  0  0 24 96 48 |  0  0  0 32 48 3 |  0  0 0 16 3 |  * * 1
```