Acronym | gidtidap |
Name | great-ditrigonary-icosidodecahedron antiprism |
Cross sections |
© |
Circumradius | sqrt[(5+sqrt(5))/8] = 0.951057 |
Colonel of regiment | sidtidap |
Face vector | 40, 180, 184, 54 |
Confer |
|
External links |
As abstract polytope gidtidap is isomorphic to sidtidap, thereby replacing pentagons by pentagrams, resp. pap by stap and gidtid by sidtid.
In fact, this polychoron generalizes the idea of a 3D antiprism by way of being a snub (here: holosnub). But this figure is not what now became the accepted sense of a 4D antiprism, where its bases have to be duals of each other. It rather looks more like what was coined as cupola (in its narrower sense), i.e. the xoPoxQoo&#x segmentochora, as it uses pyramids and antiprisms for lacing facets. (But pyramids do point here in both directions, so.)
Incidence matrix according to Dynkin symbol
β2β5/2o3o both( . . . . ) | 40 | 3 6 | 3 9 3 | 3 1 4 ------------------+----+--------+-----------+-------- both( s2s . . ) | 2 | 60 * | 0 4 0 | 2 0 2 sefa( . β5/2o . ) | 2 | * 120 | 1 1 1 | 1 1 1 ------------------+----+--------+-----------+-------- . β5/2o . ♦ 5 | 0 5 | 24 * * | 1 1 0 sefa( β2β5/2o . ) | 3 | 2 1 | * 120 * | 1 0 1 sefa( . β5/2o3o ) | 3 | 0 3 | * * 40 | 0 1 1 ------------------+----+--------+-----------+-------- β2β5/2o . ♦ 10 | 10 10 | 2 10 0 | 12 * * . β5/2o3o ♦ 20 | 0 60 | 12 0 20 | * 2 * sefa( β2β5/2o3o ) ♦ 4 | 3 3 | 0 3 1 | * * 40 starting figure: x x5/2o3o
xo5ox3/2oo3*a&#x → height = sqrt[(sqrt(5)-1)/2] = 0.786151
(gidtid || gyro gidtid)
o. o. o. | 20 * | 6 3 0 | 3 3 6 3 0 0 | 1 3 3 1 0
.o .o .o | * 20 | 0 3 6 | 0 0 3 6 3 3 | 0 3 1 3 1
-----------------+-------+----------+-------------------+-------------
x. .. .. | 2 0 | 60 * * | 1 1 1 0 0 0 | 1 1 1 0 0
oo5oo3/2oo3*a&#x | 1 1 | * 60 * | 0 0 2 2 0 0 | 0 2 1 1 0
.. .x .. | 0 2 | * * 60 | 0 0 0 1 1 1 | 0 1 0 1 1
-----------------+-------+----------+-------------------+-------------
x.5o. .. | 5 0 | 5 0 0 | 12 * * * * * | 1 1 0 0 0
x. .. o.3*a | 3 0 | 3 0 0 | * 20 * * * * | 1 0 1 0 0
xo .. .. &#x | 2 1 | 1 2 0 | * * 60 * * * | 0 1 1 0 0
.. ox .. &#x | 1 2 | 0 2 1 | * * * 60 * * | 0 1 0 1 0
.o5.x .. | 0 5 | 0 0 5 | * * * * 12 * | 0 1 0 0 1
.. .x3/2.o | 0 3 | 0 0 3 | * * * * * 20 | 0 0 0 1 1
-----------------+-------+----------+-------------------+-------------
x.5o.3/2o.3*a ♦ 20 0 | 60 0 0 | 12 20 0 0 0 0 | 1 * * * *
xo5ox .. &#x ♦ 5 5 | 5 10 5 | 1 0 5 5 1 0 | * 12 * * *
xo .. oo3*a&#x ♦ 3 1 | 3 3 0 | 0 1 3 0 0 0 | * * 20 * *
.. ox3/2oo &#x ♦ 1 3 | 0 3 3 | 0 0 0 3 0 1 | * * * 20 *
.o5.x3/2.o3*a ♦ 0 20 | 0 0 60 | 0 0 0 0 12 20 | * * * * 1
© 2004-2024 | top of page |