Acronym | gadtaxhiap |
Name | grand ditetrahedrary hexacontahecatonicosachoron antiprism |
Circumradius | sqrt[(5+sqrt(5))/8] = 0.951057 |
Vertex figure |
© |
Face vector | 1200, 9600, 13440, 6960, 1322 |
Confer |
|
External links |
As abstract polytope gadtaxhiap is isomorphic to sidtaxhiap, thereby replacing pentagons and pentagrams, resp. replacing gidtid by sidtid and pap by stap, resp. replacing gadtaxhi by sidtaxhi and gidtidap by sidtidap.
Incidence matrix according to Dynkin symbol
β2o3o3o5/3β both( . . . . . ) | 1200 | 4 12 | 6 18 12 | 6 4 16 4 | 4 1 5 --------------------+------+-----------+----------------+-------------------+----------- both( s . 2 . s ) | 2 | 2400 * | 0 6 0 | 3 0 6 0 | 3 0 2 sefa( . . . o5/3β ) | 2 | * 7200 | 1 1 2 | 1 2 2 1 | 2 1 1 --------------------+------+-----------+----------------+-------------------+----------- . . . o5/3β | 5 | 0 5 | 1440 * * | 1 2 0 0 | 2 1 0 sefa( β 2 . o5/3β ) | 3 | 2 1 | * 7200 * | 1 0 2 0 | 2 0 1 sefa( . . o3o5/3β ) | 3 | 0 3 | * * 4800 | 0 1 1 1 | 1 1 1 --------------------+------+-----------+----------------+-------------------+----------- β 2 . o5/3β ♦ 10 | 10 10 | 2 10 0 | 720 * * * | 2 0 0 . . o3o5/3β ♦ 20 | 0 60 | 12 0 20 | * 240 * * | 1 1 0 sefa( β 2 o3o5/3β ) ♦ 4 | 3 3 | 0 3 1 | * * 4800 * | 1 0 1 sefa( . o3o3o5/3β ) ♦ 4 | 0 6 | 0 0 4 | * * * 1200 | 0 1 1 --------------------+------+-----------+----------------+-------------------+----------- β 2 o3o5/3β ♦ 40 | 60 120 | 24 120 40 | 12 2 40 0 | 120 * * . o3o3o5/3β ♦ 600 | 0 3600 | 720 0 2400 | 0 120 0 600 | * 2 * sefa( β2o3o3o5/3β ) ♦ 5 | 4 6 | 0 6 4 | 0 0 4 1 | * * 1200 starting figure: x o3o3o5/3x
oo3oo3xo5ox3/2*b&#x → height = sqrt[(9 sqrt(5)-19)/2] = 0.749871
(smaller version of: gadtaxhi || gadtaxhi)
o.3o.3o.5o.3/2*b | 600 * | 12 4 0 | 12 6 12 6 0 0 | 4 4 12 4 6 0 0 | 1 4 1 4 0
.o3.o3.o5.o3/2*b | * 600 | 0 4 12 | 0 0 6 12 12 6 | 0 0 4 12 6 4 4 | 0 1 4 4 1
--------------------+---------+----------------+-----------------------------+-------------------------------+----------------
.. .. x. .. | 2 0 | 3600 * * | 2 1 1 0 0 0 | 1 2 2 0 1 0 0 | 1 1 0 2 0
oo3oo3oo5oo3/2*b&#x | 1 1 | * 2400 * | 0 0 3 3 0 0 | 0 0 3 3 3 0 0 | 0 1 1 3 0
.. .. .. .x | 0 2 | * * 3600 | 0 0 0 1 2 1 | 0 0 0 2 1 1 2 | 0 0 1 2 1
--------------------+---------+----------------+-----------------------------+-------------------------------+----------------
.. o.3x. .. | 3 0 | 3 0 0 | 2400 * * * * * | 1 1 1 0 0 0 0 | 1 1 0 1 0
.. .. x.5o. | 5 0 | 5 0 0 | * 720 * * * * | 0 2 0 0 1 0 0 | 1 0 0 2 0
.. .. xo .. &#x | 2 1 | 1 2 0 | * * 3600 * * * | 0 0 2 0 1 0 0 | 0 1 0 2 0
.. .. .. ox &#x | 1 2 | 0 2 1 | * * * 3600 * * | 0 0 0 2 1 0 0 | 0 0 1 2 0
.. .o .. .x3/2*b | 0 3 | 0 0 3 | * * * * 2400 * | 0 0 0 1 0 1 1 | 0 0 1 1 1
.. .. .o5.x | 0 5 | 0 0 5 | * * * * * 720 | 0 0 0 0 1 0 2 | 0 0 0 2 1
--------------------+---------+----------------+-----------------------------+-------------------------------+----------------
o.3o.3x. .. ♦ 4 0 | 6 0 0 | 4 0 0 0 0 0 | 600 * * * * * * | 1 1 0 0 0
.. o.3x.5o.3/2*b ♦ 20 0 | 60 0 0 | 20 12 0 0 0 0 | * 120 * * * * * | 1 0 0 1 0
.. oo3xo .. &#x ♦ 3 1 | 3 3 0 | 1 0 3 0 0 0 | * * 2400 * * * * | 0 1 0 1 0
.. oo .. ox3/2*b&#x ♦ 1 3 | 0 3 3 | 0 0 0 3 1 0 | * * * 2400 * * * | 0 0 1 1 0
.. .. xo5ox &#x ♦ 5 5 | 5 10 5 | 0 1 5 5 0 1 | * * * * 720 * * | 0 0 0 2 0
.o3.o .. .x3/2*b ♦ 0 4 | 0 0 6 | 0 0 0 0 4 0 | * * * * * 600 * | 0 0 1 0 1
.. .o3.o5.x3/2*b ♦ 0 20 | 0 0 60 | 0 0 0 0 20 12 | * * * * * * 120 | 0 0 0 1 1
--------------------+---------+----------------+-----------------------------+-------------------------------+----------------
o.3o.3x.5o.3/2*b ♦ 600 0 | 3600 0 0 | 2400 720 0 0 0 0 | 600 120 0 0 0 0 0 | 1 * * * *
oo3oo3xo .. &#x ♦ 4 1 | 6 4 0 | 4 0 6 0 0 0 | 1 0 4 0 0 0 0 | * 600 * * *
oo3oo .. ox3/2*b&#x ♦ 1 4 | 0 4 6 | 0 0 0 6 4 0 | 0 0 0 4 0 1 0 | * * 600 * *
.. oo3xo5ox3/2*b&#x ♦ 20 20 | 60 60 60 | 20 12 60 60 20 12 | 0 1 20 20 12 0 1 | * * * 120 *
.o3.o3.o5.x3/2*b ♦ 0 600 | 0 0 3600 | 0 0 0 0 2400 720 | 0 0 0 0 0 600 120 | * * * * 1
© 2004-2025 | top of page |