Acronym gadtaxhiap
Name grand ditetrahedrary hexacontahecatonicosachoron antiprism
Circumradius sqrt[(5+sqrt(5))/8] = 0.951057
Vertex figure
 ©
Face vector 1200, 9600, 13440, 6960, 1322
Confer
general polytopal classes:
segmentotera  
External
links
hedrondude   polytopewiki  

As abstract polytope gadtaxhiap is isomorphic to sidtaxhiap, thereby replacing pentagons and pentagrams, resp. replacing gidtid by sidtid and pap by stap, resp. replacing gadtaxhi by sidtaxhi and gidtidap by sidtidap.


Incidence matrix according to Dynkin symbol

β2o3o3o5/3β

both( . . . .   . ) | 1200 |    4   12 |    6   18   12 |   6   4   16    4 |   4 1    5
--------------------+------+-----------+----------------+-------------------+-----------
both( s . 2 .   s ) |    2 | 2400    * |    0    6    0 |   3   0    6    0 |   3 0    2
sefa( . . . o5/3β ) |    2 |    * 7200 |    1    1    2 |   1   2    2    1 |   2 1    1
--------------------+------+-----------+----------------+-------------------+-----------
      . . . o5/3β   |    5 |    0    5 | 1440    *    * |   1   2    0    0 |   2 1    0
sefa( β 2 . o5/3β ) |    3 |    2    1 |    * 7200    * |   1   0    2    0 |   2 0    1
sefa( . . o3o5/3β ) |    3 |    0    3 |    *    * 4800 |   0   1    1    1 |   1 1    1
--------------------+------+-----------+----------------+-------------------+-----------
      β 2 . o5/3β      10 |   10   10 |    2   10    0 | 720   *    *    * |   2 0    0
      . . o3o5/3β      20 |    0   60 |   12    0   20 |   * 240    *    * |   1 1    0
sefa( β 2 o3o5/3β )     4 |    3    3 |    0    3    1 |   *   * 4800    * |   1 0    1
sefa( . o3o3o5/3β )     4 |    0    6 |    0    0    4 |   *   *    * 1200 |   0 1    1
--------------------+------+-----------+----------------+-------------------+-----------
      β 2 o3o5/3β      40 |   60  120 |   24  120   40 |  12   2   40    0 | 120 *    *
      . o3o3o5/3β     600 |    0 3600 |  720    0 2400 |   0 120    0  600 |   * 2    *
sefa( β2o3o3o5/3β )     5 |    4    6 |    0    6    4 |   0   0    4    1 |   * * 1200

starting figure: x o3o3o5/3x

oo3oo3xo5ox3/2*b&#x   → height = sqrt[(9 sqrt(5)-19)/2] = 0.749871
(smaller version of: gadtaxhi || gadtaxhi)

o.3o.3o.5o.3/2*b    | 600   * |   12    4    0 |   12   6   12    6    0   0 |   4   4   12    4   6   0   0 | 1   4   1   4 0
.o3.o3.o5.o3/2*b    |   * 600 |    0    4   12 |    0   0    6   12   12   6 |   0   0    4   12   6   4   4 | 0   1   4   4 1
--------------------+---------+----------------+-----------------------------+-------------------------------+----------------
.. .. x. ..         |   2   0 | 3600    *    * |    2   1    1    0    0   0 |   1   2    2    0   1   0   0 | 1   1   0   2 0
oo3oo3oo5oo3/2*b&#x |   1   1 |    * 2400    * |    0   0    3    3    0   0 |   0   0    3    3   3   0   0 | 0   1   1   3 0
.. .. .. .x         |   0   2 |    *    * 3600 |    0   0    0    1    2   1 |   0   0    0    2   1   1   2 | 0   0   1   2 1
--------------------+---------+----------------+-----------------------------+-------------------------------+----------------
.. o.3x. ..         |   3   0 |    3    0    0 | 2400   *    *    *    *   * |   1   1    1    0   0   0   0 | 1   1   0   1 0
.. .. x.5o.         |   5   0 |    5    0    0 |    * 720    *    *    *   * |   0   2    0    0   1   0   0 | 1   0   0   2 0
.. .. xo ..     &#x |   2   1 |    1    2    0 |    *   * 3600    *    *   * |   0   0    2    0   1   0   0 | 0   1   0   2 0
.. .. .. ox     &#x |   1   2 |    0    2    1 |    *   *    * 3600    *   * |   0   0    0    2   1   0   0 | 0   0   1   2 0
.. .o .. .x3/2*b    |   0   3 |    0    0    3 |    *   *    *    * 2400   * |   0   0    0    1   0   1   1 | 0   0   1   1 1
.. .. .o5.x         |   0   5 |    0    0    5 |    *   *    *    *    * 720 |   0   0    0    0   1   0   2 | 0   0   0   2 1
--------------------+---------+----------------+-----------------------------+-------------------------------+----------------
o.3o.3x. ..            4   0 |    6    0    0 |    4   0    0    0    0   0 | 600   *    *    *   *   *   * | 1   1   0   0 0
.. o.3x.5o.3/2*b      20   0 |   60    0    0 |   20  12    0    0    0   0 |   * 120    *    *   *   *   * | 1   0   0   1 0
.. oo3xo ..     &#x    3   1 |    3    3    0 |    1   0    3    0    0   0 |   *   * 2400    *   *   *   * | 0   1   0   1 0
.. oo .. ox3/2*b&#x    1   3 |    0    3    3 |    0   0    0    3    1   0 |   *   *    * 2400   *   *   * | 0   0   1   1 0
.. .. xo5ox     &#x    5   5 |    5   10    5 |    0   1    5    5    0   1 |   *   *    *    * 720   *   * | 0   0   0   2 0
.o3.o .. .x3/2*b       0   4 |    0    0    6 |    0   0    0    0    4   0 |   *   *    *    *   * 600   * | 0   0   1   0 1
.. .o3.o5.x3/2*b       0  20 |    0    0   60 |    0   0    0    0   20  12 |   *   *    *    *   *   * 120 | 0   0   0   1 1
--------------------+---------+----------------+-----------------------------+-------------------------------+----------------
o.3o.3x.5o.3/2*b     600   0 | 3600    0    0 | 2400 720    0    0    0   0 | 600 120    0    0   0   0   0 | 1   *   *   * *
oo3oo3xo ..     &#x    4   1 |    6    4    0 |    4   0    6    0    0   0 |   1   0    4    0   0   0   0 | * 600   *   * *
oo3oo .. ox3/2*b&#x    1   4 |    0    4    6 |    0   0    0    6    4   0 |   0   0    0    4   0   1   0 | *   * 600   * *
.. oo3xo5ox3/2*b&#x   20  20 |   60   60   60 |   20  12   60   60   20  12 |   0   1   20   20  12   0   1 | *   *   * 120 *
.o3.o3.o5.x3/2*b       0 600 |    0    0 3600 |    0   0    0    0 2400 720 |   0   0    0    0   0 600 120 | *   *   *   * 1

© 2004-2024
top of page