Acronym | quiposaz |
Name | quasipetated hepteractihecatonicosoctaexon |
Circumradius | sqrt[9-2 sqrt(2)]/2 = 1.242133 |
Inradius wrt. hop | [7-sqrt(2)]/sqrt(28) = 1.055614 |
Inradius wrt. hixip | -[3 sqrt(2)-1]/sqrt(12) = -0.936070 |
Inradius wrt. squapen | [5-sqrt(2)]/sqrt(20) = 0.801806 |
Inradius wrt. tetcube | -[2 sqrt(2)-1]/sqrt(8) = -0.646447 |
Inradius wrt. tratess | [3-sqrt(2)]/sqrt(12) = 0.457777 |
Inradius wrt. ax | -(sqrt(2)-1)/2 = -0.207107 |
Coordinates | ((sqrt(2)-1)/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2) & all permutations, all changes of sign |
Volume | [8792-6101 sqrt(2)]/315 = 0.520264 |
Dihedral angles
(at margins) |
|
Face vector | 896, 5376, 14560, 22400, 20328, 10192, 2186 |
Confer |
|
As abstract polytope quiposaz is isomorphic to suposaz.
Incidence matrix according to Dynkin symbol
x3o3o3o3o3o4/3x . . . . . . . | 896 | 6 6 | 15 30 15 | 20 60 60 20 | 15 60 90 60 15 | 6 30 60 60 30 6 | 1 6 15 20 15 6 1 ----------------+-----+-----------+----------------+---------------------+-------------------------+----------------------------+-------------------------- x . . . . . . | 2 | 2688 * | 5 5 0 | 10 20 10 0 | 10 30 30 10 0 | 5 20 30 20 5 0 | 1 5 10 10 5 1 0 . . . . . . x | 2 | * 2688 | 0 5 5 | 0 10 20 10 | 0 10 30 30 10 | 0 5 20 30 20 5 | 0 1 5 10 10 5 1 ----------------+-----+-----------+----------------+---------------------+-------------------------+----------------------------+-------------------------- x3o . . . . . | 3 | 3 0 | 4480 * * | 4 4 0 0 | 6 12 6 0 0 | 4 12 12 4 0 0 | 1 4 6 4 1 0 0 x . . . . . x | 4 | 2 2 | * 6720 * | 0 4 4 0 | 0 6 12 6 0 | 0 4 12 12 4 0 | 0 1 4 6 4 1 0 . . . . . o4/3x | 4 | 0 4 | * * 3360 | 0 0 4 4 | 0 0 6 12 6 | 0 0 4 12 12 4 | 0 0 1 4 6 4 1 ----------------+-----+-----------+----------------+---------------------+-------------------------+----------------------------+-------------------------- x3o3o . . . . ♦ 4 | 6 0 | 4 0 0 | 4480 * * * | 3 3 0 0 0 | 3 6 3 0 0 0 | 1 3 3 1 0 0 0 x3o . . . . x ♦ 6 | 6 3 | 2 3 0 | * 8960 * * | 0 3 3 0 0 | 0 3 6 3 0 0 | 0 1 3 3 1 0 0 x . . . . o4/3x ♦ 8 | 4 8 | 0 4 2 | * * 6720 * | 0 0 3 3 0 | 0 0 3 6 3 0 | 0 0 1 3 3 1 0 . . . . o3o4/3x ♦ 8 | 0 12 | 0 0 6 | * * * 2240 | 0 0 0 3 3 | 0 0 0 3 6 3 | 0 0 0 1 3 3 1 ----------------+-----+-----------+----------------+---------------------+-------------------------+----------------------------+-------------------------- x3o3o3o . . . ♦ 5 | 10 0 | 10 0 0 | 5 0 0 0 | 2688 * * * * | 2 2 0 0 0 0 | 1 2 1 0 0 0 0 x3o3o . . . x ♦ 8 | 12 4 | 8 6 0 | 2 4 0 0 | * 6720 * * * | 0 2 2 0 0 0 | 0 1 2 1 0 0 0 x3o . . . o4/3x ♦ 12 | 12 12 | 4 12 3 | 0 4 3 0 | * * 6720 * * | 0 0 2 2 0 0 | 0 0 1 2 1 0 0 x . . . o3o4/3x ♦ 16 | 8 24 | 0 12 12 | 0 0 6 2 | * * * 3360 * | 0 0 0 2 2 0 | 0 0 0 1 2 1 0 . . . o3o3o4/3x ♦ 16 | 0 32 | 0 0 24 | 0 0 0 8 | * * * * 840 | 0 0 0 0 2 2 | 0 0 0 0 1 2 1 ----------------+-----+-----------+----------------+---------------------+-------------------------+----------------------------+-------------------------- x3o3o3o3o . . ♦ 6 | 15 0 | 20 0 0 | 15 0 0 0 | 6 0 0 0 0 | 896 * * * * * | 1 1 0 0 0 0 0 x3o3o3o . . x ♦ 10 | 20 5 | 20 10 0 | 10 10 0 0 | 2 5 0 0 0 | * 2688 * * * * | 0 1 1 0 0 0 0 x3o3o . . o4/3x ♦ 16 | 24 16 | 16 24 4 | 4 16 6 0 | 0 4 4 0 0 | * * 3360 * * * | 0 0 1 1 0 0 0 x3o . . o3o4/3x ♦ 24 | 24 36 | 8 36 18 | 0 12 18 3 | 0 0 6 3 0 | * * * 2240 * * | 0 0 0 1 1 0 0 x . . o3o3o4/3x ♦ 32 | 16 64 | 0 32 48 | 0 0 24 16 | 0 0 0 8 2 | * * * * 840 * | 0 0 0 0 1 1 0 . . o3o3o3o4/3x ♦ 32 | 0 80 | 0 0 80 | 0 0 0 40 | 0 0 0 0 10 | * * * * * 168 | 0 0 0 0 0 1 1 ----------------+-----+-----------+----------------+---------------------+-------------------------+----------------------------+-------------------------- x3o3o3o3o3o . ♦ 7 | 21 0 | 35 0 0 | 35 0 0 0 | 21 0 0 0 0 | 7 0 0 0 0 0 | 128 * * * * * * x3o3o3o3o . x ♦ 12 | 30 6 | 40 15 0 | 30 20 0 0 | 12 15 0 0 0 | 2 6 0 0 0 0 | * 448 * * * * * x3o3o3o . o4/3x ♦ 20 | 40 20 | 40 40 5 | 20 40 10 0 | 4 20 10 0 0 | 0 4 5 0 0 0 | * * 672 * * * * x3o3o . o3o4/3x ♦ 32 | 48 48 | 32 72 24 | 8 48 36 4 | 0 12 24 6 0 | 0 0 6 4 0 0 | * * * 560 * * * x3o . o3o3o4/3x ♦ 48 | 48 96 | 16 96 72 | 0 32 72 24 | 0 0 24 24 3 | 0 0 0 8 3 0 | * * * * 280 * * x . o3o3o3o4/3x ♦ 64 | 32 160 | 0 80 160 | 0 0 80 80 | 0 0 0 40 20 | 0 0 0 0 10 2 | * * * * * 84 * . o3o3o3o3o4/3x ♦ 64 | 0 192 | 0 0 240 | 0 0 0 160 | 0 0 0 0 60 | 0 0 0 0 0 12 | * * * * * * 14
© 2004-2024 | top of page |