Acronym | quacox |
Name | quasicellihexeract |
Circumradius | sqrt[5/2-sqrt(2)] = 1.042011 |
Coordinates | ((sqrt(2)-1)/2, (sqrt(2)-1)/2, 1/2, 1/2, 1/2, 1/2) & all permutations, all changes of sign |
Face vector | 960, 5760, 12320, 12000, 5148, 668 |
Confer |
|
As abstract polytope quacox is isomorphic to scox, thereby replacing quacant by scant.
Incidence matrix according to Dynkin symbol
o3x3o3o3o4/3x . . . . . . | 960 | 8 4 | 4 12 24 6 | 6 12 8 24 24 4 | 4 12 12 2 8 12 8 1 | 1 4 6 4 2 --------------+-----+-----------+---------------------+-----------------------------+--------------------------------+------------------ . x . . . . | 2 | 3840 * | 1 3 3 0 | 3 3 3 6 3 0 | 3 6 3 1 3 3 1 0 | 1 3 3 1 1 . . . . . x | 2 | * 1920 | 0 0 6 3 | 0 3 0 6 12 3 | 0 3 6 0 2 6 6 1 | 0 1 3 3 2 --------------+-----+-----------+---------------------+-----------------------------+--------------------------------+------------------ o3x . . . . | 3 | 3 0 | 1280 * * * | 3 3 0 0 0 0 | 3 6 3 0 0 0 0 0 | 1 3 3 1 0 . x3o . . . | 3 | 3 0 | * 3840 * * | 1 0 2 2 0 0 | 2 2 0 1 2 1 0 0 | 1 2 1 0 1 . x . . . x | 4 | 2 2 | * * 5760 * | 0 1 0 2 2 0 | 0 2 2 0 1 2 1 0 | 0 1 2 1 1 . . . . o4/3x | 4 | 0 4 | * * * 1440 | 0 0 0 0 4 2 | 0 0 2 0 0 2 4 1 | 0 0 1 2 2 --------------+-----+-----------+---------------------+-----------------------------+--------------------------------+------------------ o3x3o . . . ♦ 6 | 12 0 | 4 4 0 0 | 960 * * * * * | 2 2 0 0 0 0 0 0 | 1 2 1 0 0 o3x . . . x ♦ 6 | 6 3 | 2 0 3 0 | * 1920 * * * * | 0 2 2 0 0 0 0 0 | 0 1 2 1 0 . x3o3o . . ♦ 4 | 6 0 | 0 4 0 0 | * * 1920 * * * | 1 0 0 1 1 0 0 0 | 1 1 0 0 1 . x3o . . x ♦ 6 | 6 3 | 0 2 3 0 | * * * 3840 * * | 0 1 0 0 1 1 0 0 | 0 1 1 0 1 . x . . o4/3x ♦ 8 | 4 8 | 0 0 4 2 | * * * * 2880 * | 0 0 1 0 0 1 1 0 | 0 0 1 1 1 . . . o3o4/3x ♦ 8 | 0 12 | 0 0 0 6 | * * * * * 480 | 0 0 0 0 0 0 2 1 | 0 0 0 1 2 --------------+-----+-----------+---------------------+-----------------------------+--------------------------------+------------------ o3x3o3o . . ♦ 10 | 30 0 | 10 20 0 0 | 5 0 5 0 0 0 | 384 * * * * * * * | 1 1 0 0 0 o3x3o . . x ♦ 12 | 24 6 | 8 8 12 0 | 2 4 0 4 0 0 | * 960 * * * * * * | 0 1 1 0 0 o3x . . o4/3x ♦ 12 | 12 12 | 4 0 12 3 | 0 4 0 0 3 0 | * * 960 * * * * * | 0 0 1 1 0 . x3o3o3o . ♦ 5 | 10 0 | 0 10 0 0 | 0 0 5 0 0 0 | * * * 384 * * * * | 1 0 0 0 1 . x3o3o . x ♦ 8 | 12 4 | 0 8 6 0 | 0 0 2 4 0 0 | * * * * 960 * * * | 0 1 0 0 1 . x3o . o4/3x ♦ 12 | 12 12 | 0 4 12 3 | 0 0 0 4 3 0 | * * * * * 960 * * | 0 0 1 0 1 . x . o3o4/3x ♦ 16 | 8 24 | 0 0 12 12 | 0 0 0 0 6 2 | * * * * * * 480 * | 0 0 0 1 1 . . o3o3o4/3x ♦ 16 | 0 32 | 0 0 0 24 | 0 0 0 0 0 8 | * * * * * * * 60 | 0 0 0 0 2 --------------+-----+-----------+---------------------+-----------------------------+--------------------------------+------------------ o3x3o3o3o . ♦ 15 | 60 0 | 20 60 0 0 | 15 0 30 0 0 0 | 6 0 0 6 0 0 0 0 | 64 * * * * o3x3o3o . x ♦ 20 | 60 10 | 20 40 30 0 | 10 10 10 20 0 0 | 2 5 0 0 5 0 0 0 | * 192 * * * o3x3o . o4/3x ♦ 24 | 48 24 | 16 16 48 6 | 4 16 0 16 12 0 | 0 4 4 0 0 4 0 0 | * * 240 * * o3x . o3o4/3x ♦ 24 | 24 36 | 8 0 36 18 | 0 12 0 0 18 3 | 0 0 6 0 0 0 3 0 | * * * 160 * . x3o3o3o4/3x ♦ 160 | 320 320 | 0 320 480 240 | 0 0 160 320 240 80 | 0 0 0 32 80 80 40 10 | * * * * 12
© 2004-2025 | top of page |