Acronym pibox tico
Name partially bi-octa-expanded truncated icositetrachoron
Face vector 448, 896, 560, 112
Confer
uniform relative:
grico   tico  
related CnRFs:
pox tico  
general polytopal classes:
partial Stott expansions  

The non-regular hexagons {(h,H,H)2} are diagonally elongated squares. Its vertex angles are h = 90° resp. H = 135°.

This polychoron also qualifies as a "partially octa-contracted grico", but then this term would be not unique. In fact there are 2 such, depending on the grico orientation (x3x4x3o versus o3x4x3x wrt. the tessic subset of 8 directions). – The other one would be pibox srico, but belongs to a different expansion sequence.


Incidence matrix according to Dynkin symbol

oqQ3ooo3wxx4xux&#zxt   → height = 0, Q=2q = 2.828427
(tegum sum of (w,x)-tat, (q,x,u)-proh, and (Q,x,x)-proh)

o..3o..3o..4o..      | 64   *   * |  1   3   0   0   0  0 |  3  3  0   0  0  0 |  1  3  0 0
.o.3.o.3.o.4.o.      |  * 192   * |  0   1   2   1   0  0 |  2  1  1   2  0  0 |  1  2  1 0
..o3..o3..o4..o      |  *   * 192 |  0   0   0   1   2  1 |  0  1  0   2  1  2 |  0  2  1 1
---------------------+------------+-----------------------+--------------------+-----------
... ... ... x..      |  2   0   0 | 32   *   *   *   *  * |  0  3  0   0  0  0 |  0  3  0 0
oo.3oo.3oo.4oo.&#x   |  1   1   0 |  * 192   *   *   *  * |  2  1  0   0  0  0 |  1  2  0 0
... ... .x. ...      |  0   2   0 |  *   * 192   *   *  * |  1  0  1   1  0  0 |  1  1  1 0
.oo3.oo3.oo4.oo&#x   |  0   1   1 |  *   *   * 192   *  * |  0  1  0   2  0  0 |  0  2  1 0
... ... ..x ...      |  0   0   2 |  *   *   *   * 192  * |  0  0  0   1  1  1 |  0  1  1 1
... ... ... ..x      |  0   0   2 |  *   *   *   *   * 96 |  0  1  0   0  0  2 |  0  2  0 1
---------------------+------------+-----------------------+--------------------+-----------
oq. ... wx. ...&#zx  |  2   4   0 |  0   4   2   0   0  0 | 96  *  *   *  *  * |  1  1  0 0  {(h,H,H)2}
... ... ... xux&#xt  |  2   2   2 |  1   2   0   2   0  1 |  * 96  *   *  *  * |  0  2  0 0
... .o.3.x. ...      |  0   3   0 |  0   0   3   0   0  0 |  *  * 64   *  *  * |  1  0  1 0
... ... .xx ...&#x   |  0   2   2 |  0   0   1   2   1  0 |  *  *  * 192  *  * |  0  1  1 0
... ..o3..x ...      |  0   0   3 |  0   0   0   0   3  0 |  *  *  *   * 64  * |  0  0  1 1
... ... ..x4..x      |  0   0   8 |  0   0   0   0   4  4 |  *  *  *   *  * 48 |  0  1  0 1
---------------------+------------+-----------------------+--------------------+-----------
oq.3oo.3wx. ...&#zx    4  12   0 |  0  12  12   0   0  0 |  6  0  4   0  0  0 | 16  *  * *
oqQ ... wxx4xux&#zxt   8  16  16 |  4  16   8  16   8  8 |  4  8  0   8  0  2 |  * 24  * *
... .oo3.xx ...&#x     0   3   3 |  0   0   3   3   3  0 |  0  0  1   3  1  0 |  *  * 64 *
... ..o3..x4..x        0   0  24 |  0   0   0   0  24 12 |  0  0  0   0  8  6 |  *  *  * 8

© 2004-2025
top of page