Acronym pibox srico
Name partially bi-octa-expanded small rhombitetracontoctachoron
Face vector 480, 1056, 720, 144
Confer
uniform relative:
srico   grico  
related CnRFs:
pox srico  
general polytopal classes:
partial Stott expansions  

The non-regular hexagons {(h,H,H)2} are diagonally elongated squares. Its vertex angles are h = 90° resp. H = 135°.

This polychoron also qualifies as a "partially octa-contracted grico", but then this term would be not unique. In fact there are 2 such, depending on the grico orientation (x3x4x3o versus o3x4x3x wrt. the tessic subset of 8 directions). – The other one would be pibox tico, but belongs to a different expansion sequence.


Incidence matrix according to Dynkin symbol

((qo3xx3xw4xo))&#zx   → heights = 0
(tegum sum of (q,x,x,x)-gidpith and (x,w)-tah)

  o.3o.3o.4o.       | 384  * |   1   1   1   1  0 |  1  1  1  1   1   1  0 | 1  1  1  1
  .o3.o3.o4.o       |   * 96 |   0   0   0   4  2 |  0  0  0  2   4   2  1 | 0  2  1  2
--------------------+--------+--------------------+------------------------+-----------
  .. x. .. ..       |   2  0 | 192   *   *   *  * |  1  1  0  0   1   0  0 | 1  1  0  1
  .. .. x. ..       |   2  0 |   * 192   *   *  * |  1  0  1  1   0   0  0 | 1  1  1  0
  .. .. .. x.       |   2  0 |   *   * 192   *  * |  0  1  1  0   0   1  0 | 1  0  1  1
  oo3oo3oo4oo  &#x  |   1  1 |   *   *   * 384  * |  0  0  0  1   1   1  0 | 0  1  1  1
  .. .x .. ..       |   0  2 |   *   *   *   * 96 |  0  0  0  0   2   0  1 | 0  2  0  1
--------------------+--------+--------------------+------------------------+-----------
  .. x.3x. ..       |   6  0 |   3   3   0   0  0 | 64  *  *  *   *   *  * | 1  1  0  0
  .. x. .. x.       |   4  0 |   2   0   2   0  0 |  * 96  *  *   *   *  * | 1  0  0  1
  .. .. x.4x.       |   8  0 |   0   4   4   0  0 |  *  * 48  *   *   *  * | 1  0  1  0
((qo .. xw ..))&#zx |   4  2 |   0   2   0   4  0 |  *  *  * 96   *   *  * | 0  1  1  0  {(h,H,H)2}
  .. xx .. ..  &#x  |   2  2 |   1   0   0   2  1 |  *  *  *  * 192   *  * | 0  1  0  1
  .. .. .. xo  &#x  |   2  1 |   0   0   1   2  0 |  *  *  *  *   * 192  * | 0  0  1  1
  .o3.x .. ..       |   0  3 |   0   0   0   0  3 |  *  *  *  *   *   * 32 | 0  2  0  0
--------------------+--------+--------------------+------------------------+-----------
  .. x.3x.4x.         48  0 |  24  24  24   0  0 |  8 12  6  0   0   0  0 | 8  *  *  *
((qo3xx3xw ..))&#zx   24 12 |  12  12   0  24 12 |  4  0  0  6  12   0  4 | * 16  *  *
((qo .. xw4xo))&#zx   16  4 |   0   8   8  16  0 |  0  0  2  4   0   8  0 | *  * 24  *
  .. xx .. xo  &#x     4  2 |   2   0   2   4  1 |  0  1  0  0   2   2  0 | *  *  * 96

© 2004-2026
top of page