Acronym pac scant Name partially contracted small cellated penteractitriacontiditeron Circumradius ... Lace cityin approx. ASCII-art ``` square square -- cube square squobcu squobcu square -- pacsid pith square squobcu squobcu square -- pacsid pith square square -- cube ``` ``` o3o4x -- cube o3o4x x3o4x o3o4x -- pacsid pith o3o4x x3o4x o3o4x -- pacsid pith o3o4x -- cube | | +-- o3o3o4x (tes) | +--------- x3o3o4x (sidpith) +---------------- o3o3o4x (tes) ``` Coordinates (0; 1/2, 1/2, 1/2, (1+sqrt(2))/2)   & all permutations within all but first coord, all changes of sign (1/sqrt(2); 1/2, 1/2, 1/2, 1/2)       & all changes of sign Confer uniform relative: tac   scant   sidpithip   general polytopal classes: partial Stott expansions

This CRF polyteron can be obtained from scant by partial Stott contracting only within axial direction, i.e. withdrawing the medial segment, the sidpithip, from scant.

Incidence matrix according to Dynkin symbol

```qo ox3oo3oo4xx&#zx   → height = 0

o. o.3o.3o.4o.    | 32  * |  4   4  0  0 |  6   6  12  0  0  0 |  4   4  12 12  0  0  0 0 | 1  1  4  6  4
.o .o3.o3.o4.o    |  * 64 |  0   2  3  3 |  0   6   6  3  6  3 |  0   6  12  6  1  3  3 1 | 0  2  6  6  2
------------------+-------+--------------+---------------------+--------------------------+--------------
.. .. .. .. x.    |  2  0 | 64   *  *  * |  3   0   3  0  0  0 |  3   0   3  6  0  0  0 0 | 1  0  1  3  3
oo oo3oo3oo4oo&#x |  1  1 |  * 128  *  * |  0   3   3  0  0  0 |  0   3   6  3  0  0  0 0 | 0  1  3  3  1
.. .x .. .. ..    |  0  2 |  *   * 96  * |  0   2   0  2  2  0 |  0   4   4  0  1  2  1 0 | 0  2  4  2  0
.. .. .. .. .x    |  0  2 |  *   *  * 96 |  0   0   2  0  2  2 |  0   0   4  4  0  1  2 1 | 0  0  2  4  2
------------------+-------+--------------+---------------------+--------------------------+--------------
.. .. .. o.4x.    |  4  0 |  4   0  0  0 | 48   *   *  *  *  * |  2   0   0  2  0  0  0 0 | 1  0  0  1  2
.. ox .. .. ..&#x |  1  2 |  0   2  1  0 |  * 192   *  *  *  * |  0   2   2  0  0  0  0 0 | 0  1  2  1  0
.. .. .. .. xx&#x |  2  2 |  1   2  0  1 |  *   * 192  *  *  * |  0   0   2  2  0  0  0 0 | 0  0  1  2  1
.. .x3.o .. ..    |  0  3 |  0   0  3  0 |  *   *   * 64  *  * |  0   2   0  0  1  1  0 0 | 0  2  2  0  0
.. .x .. .. .x    |  0  4 |  0   0  2  2 |  *   *   *  * 96  * |  0   0   2  0  0  1  1 0 | 0  0  2  2  0
.. .. .. .o4.x    |  0  4 |  0   0  0  4 |  *   *   *  *  * 48 |  0   0   0  2  0  0  1 1 | 0  0  0  2  2
------------------+-------+--------------+---------------------+--------------------------+--------------
.. .. o.3o.4x.    ♦  8  0 | 12   0  0  0 |  6   0   0  0  0  0 | 16   *   *  *  *  *  * * | 1  0  0  0  1
.. ox3oo .. ..&#x ♦  1  3 |  0   3  3  0 |  0   3   0  1  0  0 |  * 128   *  *  *  *  * * | 0  1  1  0  0
.. ox .. .. xx&#x ♦  2  4 |  1   4  2  2 |  0   2   2  0  1  0 |  *   * 192  *  *  *  * * | 0  0  1  1  0
.. .. .. oo4xx&#x ♦  4  4 |  4   4  0  4 |  1   0   4  0  0  1 |  *   *   * 96  *  *  * * | 0  0  0  1  1
.. .x3.o3.o ..    ♦  0  4 |  0   0  6  0 |  0   0   0  4  0  0 |  *   *   *  * 16  *  * * | 0  2  0  0  0
.. .x3.o .. .x    ♦  0  6 |  0   0  6  3 |  0   0   0  2  3  0 |  *   *   *  *  * 32  * * | 0  0  2  0  0
.. .x .. .o4.x    ♦  0  8 |  0   0  4  8 |  0   0   0  0  4  2 |  *   *   *  *  *  * 24 * | 0  0  0  2  0
.. .. .o3.o4.x    ♦  0  8 |  0   0  0 12 |  0   0   0  0  0  6 |  *   *   *  *  *  *  * 8 | 0  0  0  0  2
------------------+-------+--------------+---------------------+--------------------------+--------------
.. o.3o.3o.4x.    ♦ 16  0 | 32   0  0  0 | 24   0   0  0  0  0 |  8   0   0  0  0  0  0 0 | 2  *  *  *  *
.. ox3oo3oo ..&#x ♦  1  4 |  0   4  6  0 |  0   6   0  4  0  0 |  0   4   0  0  1  0  0 0 | * 32  *  *  *
.. ox3oo .. xx&#x ♦  2  6 |  1   6  6  3 |  0   6   3  2  3  0 |  0   2   3  0  0  1  0 0 | *  * 64  *  *
.. ox .. oo4xx&#x ♦  4  8 |  4   8  4  8 |  1   4   8  0  4  2 |  0   0   4  2  0  0  1 0 | *  *  * 48  *
.. .. oo3oo4xx&#x ♦  8  8 | 12   8  0 12 |  6   0  12  0  0  6 |  1   0   0  6  0  0  0 1 | *  *  *  * 16
```