Acronym | niptant | |||||||||||||||||||||||||||
Name | penteractiprismatotruncated penteractitriacontaditeron | |||||||||||||||||||||||||||
Field of sections |
© | |||||||||||||||||||||||||||
Circumradius | sqrt[19+6 sqrt(2)]/2 = 2.621320 | |||||||||||||||||||||||||||
Vertex figure |
© | |||||||||||||||||||||||||||
Coordinates | ((1+2 sqrt(2))/2, (1+sqrt(2))/2, (1+sqrt(2))/2, (sqrt(2)-1)/2, 1/2) & all permutations, all changes of sign | |||||||||||||||||||||||||||
Colonel of regiment |
(is itself locally convex
– uniform polyteral members:
| |||||||||||||||||||||||||||
Face vector | 1920, 5760, 5520, 1920, 172 | |||||||||||||||||||||||||||
Confer |
| |||||||||||||||||||||||||||
External links |
As abstract polytope niptant is isomorphic to naquiptant, thereby interchanging the roles of octagrams and octagons, resp. replacing tic by quith and interchanging op and stop, resp. replacing proh by quiproh, tistodip by todip and thatoth by thaquitoth.
Incidence matrix according to Dynkin symbol
x3o3x3x4/3x4*c . . . . . | 1920 | 2 2 1 1 | 1 2 2 2 1 2 2 1 | 1 1 1 2 2 2 1 1 2 | 1 1 1 2 1 ---------------+------+-------------------+---------------------------------+-----------------------------------+--------------- x . . . . | 2 | 1920 * * * | 1 1 1 1 0 0 0 0 | 1 1 1 1 1 1 0 0 0 | 1 1 1 1 0 . . x . . | 2 | * 1920 * * | 0 1 0 0 1 1 1 0 | 1 0 0 1 1 0 1 1 1 | 1 1 0 1 1 . . . x . | 2 | * * 960 * | 0 0 2 0 0 2 0 1 | 0 1 0 2 0 2 1 0 2 | 1 0 1 2 1 . . . . x | 2 | * * * 960 | 0 0 0 2 0 0 2 1 | 0 0 1 0 2 2 0 1 2 | 0 1 1 2 1 ---------------+------+-------------------+---------------------------------+-----------------------------------+--------------- x3o . . . | 3 | 3 0 0 0 | 640 * * * * * * * | 1 1 1 0 0 0 0 0 0 | 1 1 1 0 0 x . x . . | 4 | 2 2 0 0 | * 960 * * * * * * | 1 0 0 1 1 0 0 0 0 | 1 1 0 1 0 x . . x . | 4 | 2 0 2 0 | * * 960 * * * * * | 0 1 0 1 0 1 0 0 0 | 1 0 1 1 0 x . . . x | 4 | 2 0 0 2 | * * * 960 * * * * | 0 0 1 0 1 1 0 0 0 | 0 1 1 1 0 . o3x . . | 3 | 0 3 0 0 | * * * * 640 * * * | 1 0 0 0 0 0 1 1 0 | 1 1 0 0 1 . . x3x . | 6 | 0 3 3 0 | * * * * * 640 * * | 0 0 0 1 0 0 1 0 1 | 1 0 0 1 1 . . x . x4*c | 8 | 0 4 0 4 | * * * * * * 480 * | 0 0 0 0 1 0 0 1 1 | 0 1 0 1 1 . . . x4/3x | 8 | 0 0 4 4 | * * * * * * * 240 | 0 0 0 0 0 2 0 0 2 | 0 0 1 2 1 ---------------+------+-------------------+---------------------------------+-----------------------------------+--------------- x3o3x . . ♦ 12 | 12 12 0 0 | 4 6 0 0 4 0 0 0 | 160 * * * * * * * * | 1 1 0 0 0 x3o . x . ♦ 6 | 6 0 3 0 | 2 0 3 0 0 0 0 0 | * 320 * * * * * * * | 1 0 1 0 0 x3o . . x ♦ 6 | 6 0 0 3 | 2 0 0 3 0 0 0 0 | * * 320 * * * * * * | 0 1 1 0 0 x . x3x . ♦ 12 | 6 6 6 0 | 0 3 3 0 0 2 0 0 | * * * 320 * * * * * | 1 0 0 1 0 x . x . x4*c ♦ 16 | 8 8 0 8 | 0 4 0 4 0 0 2 0 | * * * * 240 * * * * | 0 1 0 1 0 x . . x4/3x ♦ 16 | 8 0 8 8 | 0 0 4 4 0 0 0 2 | * * * * * 240 * * * | 0 0 1 1 0 . o3x3x . ♦ 12 | 0 12 6 0 | 0 0 0 0 4 4 0 0 | * * * * * * 160 * * | 1 0 0 0 1 . o3x . x4*c ♦ 24 | 0 24 0 12 | 0 0 0 0 8 0 6 0 | * * * * * * * 80 * | 0 1 0 0 1 . . x3x4/3x4*c ♦ 48 | 0 24 24 24 | 0 0 0 0 0 8 6 6 | * * * * * * * * 80 | 0 0 0 1 1 ---------------+------+-------------------+---------------------------------+-----------------------------------+--------------- x3o3x3x . ♦ 60 | 60 60 30 0 | 20 30 30 0 20 20 0 0 | 5 10 0 10 0 0 5 0 0 | 32 * * * * x3o3x . x4*c ♦ 192 | 192 192 0 96 | 64 96 0 96 64 0 48 0 | 16 0 32 0 24 0 0 8 0 | * 10 * * * x3o . x4/3x ♦ 24 | 24 0 12 12 | 8 0 12 12 0 0 0 3 | 0 4 4 0 0 3 0 0 0 | * * 80 * * x . x3x4/3x4*c ♦ 96 | 48 48 48 48 | 0 24 24 24 0 16 12 12 | 0 0 0 8 6 6 0 0 2 | * * * 40 * . o3x3x4/3x4*c ♦ 192 | 0 192 96 96 | 0 0 0 0 64 64 48 24 | 0 0 0 0 0 0 16 8 8 | * * * * 10
© 2004-2025 | top of page |