Acronym niptant
Name penteractiprismatotruncated penteractitriacontaditeron
Field of sections
 ©
Circumradius sqrt[19+6 sqrt(2)]/2 = 2.621320
Vertex figure
 ©
Coordinates ((1+2 sqrt(2))/2, (1+sqrt(2))/2, (1+sqrt(2))/2, (sqrt(2)-1)/2, 1/2)   & all permutations, all changes of sign
Colonel of regiment (is itself locally convex – uniform polyteral members:
by cells: cotcope pittip prip proh siphado thatoth thatpath tistodip
niptant 4003210010080
narptint 0320010101080
& others)
Face vector 1920, 5760, 5520, 1920, 172
Confer
general polytopal classes:
Wythoffian polytera  
External
links
hedrondude   polytopewiki  

As abstract polytope niptant is isomorphic to naquiptant, thereby interchanging the roles of octagrams and octagons, resp. replacing tic by quith and interchanging op and stop, resp. replacing proh by quiproh, tistodip by todip and thatoth by thaquitoth.


Incidence matrix according to Dynkin symbol

x3o3x3x4/3x4*c

. . . .   .    | 1920 |    2    2   1   1 |   1   2   2   2   1   2   2   1 |   1   1   1   2   2   2   1  1  2 |  1  1  1  2  1
---------------+------+-------------------+---------------------------------+-----------------------------------+---------------
x . . .   .    |    2 | 1920    *   *   * |   1   1   1   1   0   0   0   0 |   1   1   1   1   1   1   0  0  0 |  1  1  1  1  0
. . x .   .    |    2 |    * 1920   *   * |   0   1   0   0   1   1   1   0 |   1   0   0   1   1   0   1  1  1 |  1  1  0  1  1
. . . x   .    |    2 |    *    * 960   * |   0   0   2   0   0   2   0   1 |   0   1   0   2   0   2   1  0  2 |  1  0  1  2  1
. . . .   x    |    2 |    *    *   * 960 |   0   0   0   2   0   0   2   1 |   0   0   1   0   2   2   0  1  2 |  0  1  1  2  1
---------------+------+-------------------+---------------------------------+-----------------------------------+---------------
x3o . .   .    |    3 |    3    0   0   0 | 640   *   *   *   *   *   *   * |   1   1   1   0   0   0   0  0  0 |  1  1  1  0  0
x . x .   .    |    4 |    2    2   0   0 |   * 960   *   *   *   *   *   * |   1   0   0   1   1   0   0  0  0 |  1  1  0  1  0
x . . x   .    |    4 |    2    0   2   0 |   *   * 960   *   *   *   *   * |   0   1   0   1   0   1   0  0  0 |  1  0  1  1  0
x . . .   x    |    4 |    2    0   0   2 |   *   *   * 960   *   *   *   * |   0   0   1   0   1   1   0  0  0 |  0  1  1  1  0
. o3x .   .    |    3 |    0    3   0   0 |   *   *   *   * 640   *   *   * |   1   0   0   0   0   0   1  1  0 |  1  1  0  0  1
. . x3x   .    |    6 |    0    3   3   0 |   *   *   *   *   * 640   *   * |   0   0   0   1   0   0   1  0  1 |  1  0  0  1  1
. . x .   x4*c |    8 |    0    4   0   4 |   *   *   *   *   *   * 480   * |   0   0   0   0   1   0   0  1  1 |  0  1  0  1  1
. . . x4/3x    |    8 |    0    0   4   4 |   *   *   *   *   *   *   * 240 |   0   0   0   0   0   2   0  0  2 |  0  0  1  2  1
---------------+------+-------------------+---------------------------------+-----------------------------------+---------------
x3o3x .   .       12 |   12   12   0   0 |   4   6   0   0   4   0   0   0 | 160   *   *   *   *   *   *  *  * |  1  1  0  0  0
x3o . x   .        6 |    6    0   3   0 |   2   0   3   0   0   0   0   0 |   * 320   *   *   *   *   *  *  * |  1  0  1  0  0
x3o . .   x        6 |    6    0   0   3 |   2   0   0   3   0   0   0   0 |   *   * 320   *   *   *   *  *  * |  0  1  1  0  0
x . x3x   .       12 |    6    6   6   0 |   0   3   3   0   0   2   0   0 |   *   *   * 320   *   *   *  *  * |  1  0  0  1  0
x . x .   x4*c    16 |    8    8   0   8 |   0   4   0   4   0   0   2   0 |   *   *   *   * 240   *   *  *  * |  0  1  0  1  0
x . . x4/3x       16 |    8    0   8   8 |   0   0   4   4   0   0   0   2 |   *   *   *   *   * 240   *  *  * |  0  0  1  1  0
. o3x3x   .       12 |    0   12   6   0 |   0   0   0   0   4   4   0   0 |   *   *   *   *   *   * 160  *  * |  1  0  0  0  1
. o3x .   x4*c    24 |    0   24   0  12 |   0   0   0   0   8   0   6   0 |   *   *   *   *   *   *   * 80  * |  0  1  0  0  1
. . x3x4/3x4*c    48 |    0   24  24  24 |   0   0   0   0   0   8   6   6 |   *   *   *   *   *   *   *  * 80 |  0  0  0  1  1
---------------+------+-------------------+---------------------------------+-----------------------------------+---------------
x3o3x3x   .       60 |   60   60  30   0 |  20  30  30   0  20  20   0   0 |   5  10   0  10   0   0   5  0  0 | 32  *  *  *  *
x3o3x .   x4*c   192 |  192  192   0  96 |  64  96   0  96  64   0  48   0 |  16   0  32   0  24   0   0  8  0 |  * 10  *  *  *
x3o . x4/3x       24 |   24    0  12  12 |   8   0  12  12   0   0   0   3 |   0   4   4   0   0   3   0  0  0 |  *  * 80  *  *
x . x3x4/3x4*c    96 |   48   48  48  48 |   0  24  24  24   0  16  12  12 |   0   0   0   8   6   6   0  0  2 |  *  *  * 40  *
. o3x3x4/3x4*c   192 |    0  192  96  96 |   0   0   0   0  64  64  48  24 |   0   0   0   0   0   0  16  8  8 |  *  *  *  * 10

© 2004-2024
top of page