Acronym | naquiptant | |||||||||||||||||||||||||||
Name | penteractiquasiprismatotruncated penteractitriacontaditeron | |||||||||||||||||||||||||||
Field of sections |
| |||||||||||||||||||||||||||
Circumradius | sqrt[19-6 sqrt(2)]/2 = 1.621320 | |||||||||||||||||||||||||||
Vertex figure |
| |||||||||||||||||||||||||||
Coordinates | ((1+sqrt(2))/2, (sqrt(2)-1)/2, (sqrt(2)-1)/2, (2 sqrt(2)-1)/2, 1/2) & all permutations, all changes of sign | |||||||||||||||||||||||||||
Colonel of regiment |
(is itself locally convex
– uniform polyteral members:
| |||||||||||||||||||||||||||
Face vector | 1920, 5760, 5520, 1920, 172 | |||||||||||||||||||||||||||
Confer |
| |||||||||||||||||||||||||||
External links |
![]() ![]() |
As abstract polytope naquiptant is isomorphic to niptant, thereby interchanging the roles of octagrams and octagons, resp. replacing quith by tic and interchanging op and stop, resp. replacing quiproh by proh, todip by tistodip and thaquitoth by thatoth.
Incidence matrix according to Dynkin symbol
3 3 3 x---x---o---x 4 \ / 4/3 x
x3o3x3x4x4/3*c . . . . . | 1920 | 2 2 1 1 | 1 2 2 2 1 2 2 1 | 1 1 1 2 2 2 1 1 2 | 1 1 1 2 1 ---------------+------+-------------------+---------------------------------+-----------------------------------+--------------- x . . . . | 2 | 1920 * * * | 1 1 1 1 0 0 0 0 | 1 1 1 1 1 1 0 0 0 | 1 1 1 1 0 . . x . . | 2 | * 1920 * * | 0 1 0 0 1 1 1 0 | 1 0 0 1 1 0 1 1 1 | 1 1 0 1 1 . . . x . | 2 | * * 960 * | 0 0 2 0 0 2 0 1 | 0 1 0 2 0 2 1 0 2 | 1 0 1 2 1 . . . . x | 2 | * * * 960 | 0 0 0 2 0 0 2 1 | 0 0 1 0 2 2 0 1 2 | 0 1 1 2 1 ---------------+------+-------------------+---------------------------------+-----------------------------------+--------------- x3o . . . | 3 | 3 0 0 0 | 640 * * * * * * * | 1 1 1 0 0 0 0 0 0 | 1 1 1 0 0 x . x . . | 4 | 2 2 0 0 | * 960 * * * * * * | 1 0 0 1 1 0 0 0 0 | 1 1 0 1 0 x . . x . | 4 | 2 0 2 0 | * * 960 * * * * * | 0 1 0 1 0 1 0 0 0 | 1 0 1 1 0 x . . . x | 4 | 2 0 0 2 | * * * 960 * * * * | 0 0 1 0 1 1 0 0 0 | 0 1 1 1 0 . o3x . . | 3 | 0 3 0 0 | * * * * 640 * * * | 1 0 0 0 0 0 1 1 0 | 1 1 0 0 1 . . x3x . | 6 | 0 3 3 0 | * * * * * 640 * * | 0 0 0 1 0 0 1 0 1 | 1 0 0 1 1 . . x . x4/3*c | 8 | 0 4 0 4 | * * * * * * 480 * | 0 0 0 0 1 0 0 1 1 | 0 1 0 1 1 . . . x4x | 8 | 0 0 4 4 | * * * * * * * 240 | 0 0 0 0 0 2 0 0 2 | 0 0 1 2 1 ---------------+------+-------------------+---------------------------------+-----------------------------------+--------------- x3o3x . . ♦ 12 | 12 12 0 0 | 4 6 0 0 4 0 0 0 | 160 * * * * * * * * | 1 1 0 0 0 x3o . x . ♦ 6 | 6 0 3 0 | 2 0 3 0 0 0 0 0 | * 320 * * * * * * * | 1 0 1 0 0 x3o . . x ♦ 6 | 6 0 0 3 | 2 0 0 3 0 0 0 0 | * * 320 * * * * * * | 0 1 1 0 0 x . x3x . ♦ 12 | 6 6 6 0 | 0 3 3 0 0 2 0 0 | * * * 320 * * * * * | 1 0 0 1 0 x . x . x4/3*c ♦ 16 | 8 8 0 8 | 0 4 0 4 0 0 2 0 | * * * * 240 * * * * | 0 1 0 1 0 x . . x4x ♦ 16 | 8 0 8 8 | 0 0 4 4 0 0 0 2 | * * * * * 240 * * * | 0 0 1 1 0 . o3x3x . ♦ 12 | 0 12 6 0 | 0 0 0 0 4 4 0 0 | * * * * * * 160 * * | 1 0 0 0 1 . o3x . x4/3*c ♦ 24 | 0 24 0 12 | 0 0 0 0 8 0 6 0 | * * * * * * * 80 * | 0 1 0 0 1 . . x3x4x4/3*c ♦ 48 | 0 24 24 24 | 0 0 0 0 0 8 6 6 | * * * * * * * * 80 | 0 0 0 1 1 ---------------+------+-------------------+---------------------------------+-----------------------------------+--------------- x3o3x3x . ♦ 60 | 60 60 30 0 | 20 30 30 0 20 20 0 0 | 5 10 0 10 0 0 5 0 0 | 32 * * * * x3o3x . x4/3*c ♦ 192 | 192 192 0 96 | 64 96 0 96 64 0 48 0 | 16 0 32 0 24 0 0 8 0 | * 10 * * * x3o . x4x ♦ 24 | 24 0 12 12 | 8 0 12 12 0 0 0 3 | 0 4 4 0 0 3 0 0 0 | * * 80 * * x . x3x4x4/3*c ♦ 96 | 48 48 48 48 | 0 24 24 24 0 16 12 12 | 0 0 0 8 6 6 0 0 2 | * * * 40 * . o3x3x4x4/3*c ♦ 192 | 0 192 96 96 | 0 0 0 0 64 64 48 24 | 0 0 0 0 0 0 16 8 8 | * * * * 10
3 3/2 3/2 x---x---o---x 4 \ / 4/3 x
x3/2o3/2x3x4x4/3*c . . . . . | 1920 | 2 2 1 1 | 1 2 2 2 1 2 2 1 | 1 1 1 2 2 2 1 1 2 | 1 1 1 2 1 -------------------+------+-------------------+---------------------------------+-----------------------------------+--------------- x . . . . | 2 | 1920 * * * | 1 1 1 1 0 0 0 0 | 1 1 1 1 1 1 0 0 0 | 1 1 1 1 0 . . x . . | 2 | * 1920 * * | 0 1 0 0 1 1 1 0 | 1 0 0 1 1 0 1 1 1 | 1 1 0 1 1 . . . x . | 2 | * * 960 * | 0 0 2 0 0 2 0 1 | 0 1 0 2 0 2 1 0 2 | 1 0 1 2 1 . . . . x | 2 | * * * 960 | 0 0 0 2 0 0 2 1 | 0 0 1 0 2 2 0 1 2 | 0 1 1 2 1 -------------------+------+-------------------+---------------------------------+-----------------------------------+--------------- x3/2o . . . | 3 | 3 0 0 0 | 640 * * * * * * * | 1 1 1 0 0 0 0 0 0 | 1 1 1 0 0 x . x . . | 4 | 2 2 0 0 | * 960 * * * * * * | 1 0 0 1 1 0 0 0 0 | 1 1 0 1 0 x . . x . | 4 | 2 0 2 0 | * * 960 * * * * * | 0 1 0 1 0 1 0 0 0 | 1 0 1 1 0 x . . . x | 4 | 2 0 0 2 | * * * 960 * * * * | 0 0 1 0 1 1 0 0 0 | 0 1 1 1 0 . o3/2x . . | 3 | 0 3 0 0 | * * * * 640 * * * | 1 0 0 0 0 0 1 1 0 | 1 1 0 0 1 . . x3x . | 6 | 0 3 3 0 | * * * * * 640 * * | 0 0 0 1 0 0 1 0 1 | 1 0 0 1 1 . . x . x4/3*c | 8 | 0 4 0 4 | * * * * * * 480 * | 0 0 0 0 1 0 0 1 1 | 0 1 0 1 1 . . . x4x | 8 | 0 0 4 4 | * * * * * * * 240 | 0 0 0 0 0 2 0 0 2 | 0 0 1 2 1 -------------------+------+-------------------+---------------------------------+-----------------------------------+--------------- x3/2o3/2x . . ♦ 12 | 12 12 0 0 | 4 6 0 0 4 0 0 0 | 160 * * * * * * * * | 1 1 0 0 0 x3/2o . x . ♦ 6 | 6 0 3 0 | 2 0 3 0 0 0 0 0 | * 320 * * * * * * * | 1 0 1 0 0 x3/2o . . x ♦ 6 | 6 0 0 3 | 2 0 0 3 0 0 0 0 | * * 320 * * * * * * | 0 1 1 0 0 x . x3x . ♦ 12 | 6 6 6 0 | 0 3 3 0 0 2 0 0 | * * * 320 * * * * * | 1 0 0 1 0 x . x . x4/3*c ♦ 16 | 8 8 0 8 | 0 4 0 4 0 0 2 0 | * * * * 240 * * * * | 0 1 0 1 0 x . . x4x ♦ 16 | 8 0 8 8 | 0 0 4 4 0 0 0 2 | * * * * * 240 * * * | 0 0 1 1 0 . o3/2x3x . ♦ 12 | 0 12 6 0 | 0 0 0 0 4 4 0 0 | * * * * * * 160 * * | 1 0 0 0 1 . o3/2x . x4/3*c ♦ 24 | 0 24 0 12 | 0 0 0 0 8 0 6 0 | * * * * * * * 80 * | 0 1 0 0 1 . . x3x4x4/3*c ♦ 48 | 0 24 24 24 | 0 0 0 0 0 8 6 6 | * * * * * * * * 80 | 0 0 0 1 1 -------------------+------+-------------------+---------------------------------+-----------------------------------+--------------- x3/2o3/2x3x . ♦ 60 | 60 60 30 0 | 20 30 30 0 20 20 0 0 | 5 10 0 10 0 0 5 0 0 | 32 * * * * x3/2o3/2x . x4/3*c ♦ 192 | 192 192 0 96 | 64 96 0 96 64 0 48 0 | 16 0 32 0 24 0 0 8 0 | * 10 * * * x3/2o . x4x ♦ 24 | 24 0 12 12 | 8 0 12 12 0 0 0 3 | 0 4 4 0 0 3 0 0 0 | * * 80 * * x . x3x4x4/3*c ♦ 96 | 48 48 48 48 | 0 24 24 24 0 16 12 12 | 0 0 0 8 6 6 0 0 2 | * * * 40 * . o3/2x3x4x4/3*c ♦ 192 | 0 192 96 96 | 0 0 0 0 64 64 48 24 | 0 0 0 0 0 0 16 8 8 | * * * * 10
© 2004-2025 | top of page |