Acronym naquiptant
Name penteractiquasiprismatotruncated penteractitriacontaditeron
Field of sections
 ©
Circumradius sqrt[19-6 sqrt(2)]/2 = 1.621320
Vertex figure
 ©
Coordinates ((1+sqrt(2))/2, (sqrt(2)-1)/2, (sqrt(2)-1)/2, (2 sqrt(2)-1)/2, 1/2)   & all permutations, all changes of sign
Colonel of regiment (is itself locally convex – uniform polyteral members:
by facets: cotcope giphado pittip prip quiproh thaquitoth thaquitpath todip
naquiptant 4000321010080
noqraptant 0103200101080
& others)
Face vector 1920, 5760, 5520, 1920, 172
Confer
general polytopal classes:
Wythoffian polytera  
External
links
hedrondude   polytopewiki  

As abstract polytope naquiptant is isomorphic to niptant, thereby interchanging the roles of octagrams and octagons, resp. replacing quith by tic and interchanging op and stop, resp. replacing quiproh by proh, todip by tistodip and thaquitoth by thatoth.


Incidence matrix according to Dynkin symbol

     3   3   3   
   x---x---o---x 
  4 \ / 4/3      
     x           
x3o3x3x4x4/3*c

. . . . .      | 1920 |    2    2   1   1 |   1   2   2   2   1   2   2   1 |   1   1   1   2   2   2   1  1  2 |  1  1  1  2  1
---------------+------+-------------------+---------------------------------+-----------------------------------+---------------
x . . . .      |    2 | 1920    *   *   * |   1   1   1   1   0   0   0   0 |   1   1   1   1   1   1   0  0  0 |  1  1  1  1  0
. . x . .      |    2 |    * 1920   *   * |   0   1   0   0   1   1   1   0 |   1   0   0   1   1   0   1  1  1 |  1  1  0  1  1
. . . x .      |    2 |    *    * 960   * |   0   0   2   0   0   2   0   1 |   0   1   0   2   0   2   1  0  2 |  1  0  1  2  1
. . . . x      |    2 |    *    *   * 960 |   0   0   0   2   0   0   2   1 |   0   0   1   0   2   2   0  1  2 |  0  1  1  2  1
---------------+------+-------------------+---------------------------------+-----------------------------------+---------------
x3o . . .      |    3 |    3    0   0   0 | 640   *   *   *   *   *   *   * |   1   1   1   0   0   0   0  0  0 |  1  1  1  0  0
x . x . .      |    4 |    2    2   0   0 |   * 960   *   *   *   *   *   * |   1   0   0   1   1   0   0  0  0 |  1  1  0  1  0
x . . x .      |    4 |    2    0   2   0 |   *   * 960   *   *   *   *   * |   0   1   0   1   0   1   0  0  0 |  1  0  1  1  0
x . . . x      |    4 |    2    0   0   2 |   *   *   * 960   *   *   *   * |   0   0   1   0   1   1   0  0  0 |  0  1  1  1  0
. o3x . .      |    3 |    0    3   0   0 |   *   *   *   * 640   *   *   * |   1   0   0   0   0   0   1  1  0 |  1  1  0  0  1
. . x3x .      |    6 |    0    3   3   0 |   *   *   *   *   * 640   *   * |   0   0   0   1   0   0   1  0  1 |  1  0  0  1  1
. . x . x4/3*c |    8 |    0    4   0   4 |   *   *   *   *   *   * 480   * |   0   0   0   0   1   0   0  1  1 |  0  1  0  1  1
. . . x4x      |    8 |    0    0   4   4 |   *   *   *   *   *   *   * 240 |   0   0   0   0   0   2   0  0  2 |  0  0  1  2  1
---------------+------+-------------------+---------------------------------+-----------------------------------+---------------
x3o3x . .         12 |   12   12   0   0 |   4   6   0   0   4   0   0   0 | 160   *   *   *   *   *   *  *  * |  1  1  0  0  0
x3o . x .          6 |    6    0   3   0 |   2   0   3   0   0   0   0   0 |   * 320   *   *   *   *   *  *  * |  1  0  1  0  0
x3o . . x          6 |    6    0   0   3 |   2   0   0   3   0   0   0   0 |   *   * 320   *   *   *   *  *  * |  0  1  1  0  0
x . x3x .         12 |    6    6   6   0 |   0   3   3   0   0   2   0   0 |   *   *   * 320   *   *   *  *  * |  1  0  0  1  0
x . x . x4/3*c    16 |    8    8   0   8 |   0   4   0   4   0   0   2   0 |   *   *   *   * 240   *   *  *  * |  0  1  0  1  0
x . . x4x         16 |    8    0   8   8 |   0   0   4   4   0   0   0   2 |   *   *   *   *   * 240   *  *  * |  0  0  1  1  0
. o3x3x .         12 |    0   12   6   0 |   0   0   0   0   4   4   0   0 |   *   *   *   *   *   * 160  *  * |  1  0  0  0  1
. o3x . x4/3*c    24 |    0   24   0  12 |   0   0   0   0   8   0   6   0 |   *   *   *   *   *   *   * 80  * |  0  1  0  0  1
. . x3x4x4/3*c    48 |    0   24  24  24 |   0   0   0   0   0   8   6   6 |   *   *   *   *   *   *   *  * 80 |  0  0  0  1  1
---------------+------+-------------------+---------------------------------+-----------------------------------+---------------
x3o3x3x .         60 |   60   60  30   0 |  20  30  30   0  20  20   0   0 |   5  10   0  10   0   0   5  0  0 | 32  *  *  *  *
x3o3x . x4/3*c   192 |  192  192   0  96 |  64  96   0  96  64   0  48   0 |  16   0  32   0  24   0   0  8  0 |  * 10  *  *  *
x3o . x4x         24 |   24    0  12  12 |   8   0  12  12   0   0   0   3 |   0   4   4   0   0   3   0  0  0 |  *  * 80  *  *
x . x3x4x4/3*c    96 |   48   48  48  48 |   0  24  24  24   0  16  12  12 |   0   0   0   8   6   6   0  0  2 |  *  *  * 40  *
. o3x3x4x4/3*c   192 |    0  192  96  96 |   0   0   0   0  64  64  48  24 |   0   0   0   0   0   0  16  8  8 |  *  *  *  * 10

     3  3/2 3/2  
   x---x---o---x 
  4 \ / 4/3      
     x           
x3/2o3/2x3x4x4/3*c

.   .   . . .      | 1920 |    2    2   1   1 |   1   2   2   2   1   2   2   1 |   1   1   1   2   2   2   1  1  2 |  1  1  1  2  1
-------------------+------+-------------------+---------------------------------+-----------------------------------+---------------
x   .   . . .      |    2 | 1920    *   *   * |   1   1   1   1   0   0   0   0 |   1   1   1   1   1   1   0  0  0 |  1  1  1  1  0
.   .   x . .      |    2 |    * 1920   *   * |   0   1   0   0   1   1   1   0 |   1   0   0   1   1   0   1  1  1 |  1  1  0  1  1
.   .   . x .      |    2 |    *    * 960   * |   0   0   2   0   0   2   0   1 |   0   1   0   2   0   2   1  0  2 |  1  0  1  2  1
.   .   . . x      |    2 |    *    *   * 960 |   0   0   0   2   0   0   2   1 |   0   0   1   0   2   2   0  1  2 |  0  1  1  2  1
-------------------+------+-------------------+---------------------------------+-----------------------------------+---------------
x3/2o   . . .      |    3 |    3    0   0   0 | 640   *   *   *   *   *   *   * |   1   1   1   0   0   0   0  0  0 |  1  1  1  0  0
x   .   x . .      |    4 |    2    2   0   0 |   * 960   *   *   *   *   *   * |   1   0   0   1   1   0   0  0  0 |  1  1  0  1  0
x   .   . x .      |    4 |    2    0   2   0 |   *   * 960   *   *   *   *   * |   0   1   0   1   0   1   0  0  0 |  1  0  1  1  0
x   .   . . x      |    4 |    2    0   0   2 |   *   *   * 960   *   *   *   * |   0   0   1   0   1   1   0  0  0 |  0  1  1  1  0
.   o3/2x . .      |    3 |    0    3   0   0 |   *   *   *   * 640   *   *   * |   1   0   0   0   0   0   1  1  0 |  1  1  0  0  1
.   .   x3x .      |    6 |    0    3   3   0 |   *   *   *   *   * 640   *   * |   0   0   0   1   0   0   1  0  1 |  1  0  0  1  1
.   .   x . x4/3*c |    8 |    0    4   0   4 |   *   *   *   *   *   * 480   * |   0   0   0   0   1   0   0  1  1 |  0  1  0  1  1
.   .   . x4x      |    8 |    0    0   4   4 |   *   *   *   *   *   *   * 240 |   0   0   0   0   0   2   0  0  2 |  0  0  1  2  1
-------------------+------+-------------------+---------------------------------+-----------------------------------+---------------
x3/2o3/2x . .         12 |   12   12   0   0 |   4   6   0   0   4   0   0   0 | 160   *   *   *   *   *   *  *  * |  1  1  0  0  0
x3/2o   . x .          6 |    6    0   3   0 |   2   0   3   0   0   0   0   0 |   * 320   *   *   *   *   *  *  * |  1  0  1  0  0
x3/2o   . . x          6 |    6    0   0   3 |   2   0   0   3   0   0   0   0 |   *   * 320   *   *   *   *  *  * |  0  1  1  0  0
x   .   x3x .         12 |    6    6   6   0 |   0   3   3   0   0   2   0   0 |   *   *   * 320   *   *   *  *  * |  1  0  0  1  0
x   .   x . x4/3*c    16 |    8    8   0   8 |   0   4   0   4   0   0   2   0 |   *   *   *   * 240   *   *  *  * |  0  1  0  1  0
x   .   . x4x         16 |    8    0   8   8 |   0   0   4   4   0   0   0   2 |   *   *   *   *   * 240   *  *  * |  0  0  1  1  0
.   o3/2x3x .         12 |    0   12   6   0 |   0   0   0   0   4   4   0   0 |   *   *   *   *   *   * 160  *  * |  1  0  0  0  1
.   o3/2x . x4/3*c    24 |    0   24   0  12 |   0   0   0   0   8   0   6   0 |   *   *   *   *   *   *   * 80  * |  0  1  0  0  1
.   .   x3x4x4/3*c    48 |    0   24  24  24 |   0   0   0   0   0   8   6   6 |   *   *   *   *   *   *   *  * 80 |  0  0  0  1  1
-------------------+------+-------------------+---------------------------------+-----------------------------------+---------------
x3/2o3/2x3x .         60 |   60   60  30   0 |  20  30  30   0  20  20   0   0 |   5  10   0  10   0   0   5  0  0 | 32  *  *  *  *
x3/2o3/2x . x4/3*c   192 |  192  192   0  96 |  64  96   0  96  64   0  48   0 |  16   0  32   0  24   0   0  8  0 |  * 10  *  *  *
x3/2o   . x4x         24 |   24    0  12  12 |   8   0  12  12   0   0   0   3 |   0   4   4   0   0   3   0  0  0 |  *  * 80  *  *
x   .   x3x4x4/3*c    96 |   48   48  48  48 |   0  24  24  24   0  16  12  12 |   0   0   0   8   6   6   0  0  2 |  *  *  * 40  *
.   o3/2x3x4x4/3*c   192 |    0  192  96  96 |   0   0   0   0  64  64  48  24 |   0   0   0   0   0   0  16  8  8 |  *  *  *  * 10

© 2004-2025
top of page