Acronym | naquiptant | |||||||||||||||||||||||||||
Name | penteractiquasiprismatotruncated penteractitriacontaditeron | |||||||||||||||||||||||||||
Field of sections |
© | |||||||||||||||||||||||||||
Circumradius | sqrt[19-6 sqrt(2)]/2 = 1.621320 | |||||||||||||||||||||||||||
Vertex figure |
© | |||||||||||||||||||||||||||
Coordinates | ((1+sqrt(2))/2, (sqrt(2)-1)/2, (sqrt(2)-1)/2, (2 sqrt(2)-1)/2, 1/2) & all permutations, all changes of sign | |||||||||||||||||||||||||||
Colonel of regiment |
(is itself locally convex
– uniform polyteral members:
| |||||||||||||||||||||||||||
Face vector | 1920, 5760, 5520, 1920, 172 | |||||||||||||||||||||||||||
Confer |
| |||||||||||||||||||||||||||
External links |
As abstract polytope naquiptant is isomorphic to niptant, thereby interchanging the roles of octagrams and octagons, resp. replacing quith by tic and interchanging op and stop, resp. replacing quiproh by proh, todip by tistodip and thaquitoth by thatoth.
Incidence matrix according to Dynkin symbol
x3o3x3x4x4/3*c . . . . . | 1920 | 2 2 1 1 | 1 2 2 2 1 2 2 1 | 1 1 1 2 2 2 1 1 2 | 1 1 1 2 1 ---------------+------+-------------------+---------------------------------+-----------------------------------+--------------- x . . . . | 2 | 1920 * * * | 1 1 1 1 0 0 0 0 | 1 1 1 1 1 1 0 0 0 | 1 1 1 1 0 . . x . . | 2 | * 1920 * * | 0 1 0 0 1 1 1 0 | 1 0 0 1 1 0 1 1 1 | 1 1 0 1 1 . . . x . | 2 | * * 960 * | 0 0 2 0 0 2 0 1 | 0 1 0 2 0 2 1 0 2 | 1 0 1 2 1 . . . . x | 2 | * * * 960 | 0 0 0 2 0 0 2 1 | 0 0 1 0 2 2 0 1 2 | 0 1 1 2 1 ---------------+------+-------------------+---------------------------------+-----------------------------------+--------------- x3o . . . | 3 | 3 0 0 0 | 640 * * * * * * * | 1 1 1 0 0 0 0 0 0 | 1 1 1 0 0 x . x . . | 4 | 2 2 0 0 | * 960 * * * * * * | 1 0 0 1 1 0 0 0 0 | 1 1 0 1 0 x . . x . | 4 | 2 0 2 0 | * * 960 * * * * * | 0 1 0 1 0 1 0 0 0 | 1 0 1 1 0 x . . . x | 4 | 2 0 0 2 | * * * 960 * * * * | 0 0 1 0 1 1 0 0 0 | 0 1 1 1 0 . o3x . . | 3 | 0 3 0 0 | * * * * 640 * * * | 1 0 0 0 0 0 1 1 0 | 1 1 0 0 1 . . x3x . | 6 | 0 3 3 0 | * * * * * 640 * * | 0 0 0 1 0 0 1 0 1 | 1 0 0 1 1 . . x . x4/3*c | 8 | 0 4 0 4 | * * * * * * 480 * | 0 0 0 0 1 0 0 1 1 | 0 1 0 1 1 . . . x4x | 8 | 0 0 4 4 | * * * * * * * 240 | 0 0 0 0 0 2 0 0 2 | 0 0 1 2 1 ---------------+------+-------------------+---------------------------------+-----------------------------------+--------------- x3o3x . . ♦ 12 | 12 12 0 0 | 4 6 0 0 4 0 0 0 | 160 * * * * * * * * | 1 1 0 0 0 x3o . x . ♦ 6 | 6 0 3 0 | 2 0 3 0 0 0 0 0 | * 320 * * * * * * * | 1 0 1 0 0 x3o . . x ♦ 6 | 6 0 0 3 | 2 0 0 3 0 0 0 0 | * * 320 * * * * * * | 0 1 1 0 0 x . x3x . ♦ 12 | 6 6 6 0 | 0 3 3 0 0 2 0 0 | * * * 320 * * * * * | 1 0 0 1 0 x . x . x4/3*c ♦ 16 | 8 8 0 8 | 0 4 0 4 0 0 2 0 | * * * * 240 * * * * | 0 1 0 1 0 x . . x4x ♦ 16 | 8 0 8 8 | 0 0 4 4 0 0 0 2 | * * * * * 240 * * * | 0 0 1 1 0 . o3x3x . ♦ 12 | 0 12 6 0 | 0 0 0 0 4 4 0 0 | * * * * * * 160 * * | 1 0 0 0 1 . o3x . x4/3*c ♦ 24 | 0 24 0 12 | 0 0 0 0 8 0 6 0 | * * * * * * * 80 * | 0 1 0 0 1 . . x3x4x4/3*c ♦ 48 | 0 24 24 24 | 0 0 0 0 0 8 6 6 | * * * * * * * * 80 | 0 0 0 1 1 ---------------+------+-------------------+---------------------------------+-----------------------------------+--------------- x3o3x3x . ♦ 60 | 60 60 30 0 | 20 30 30 0 20 20 0 0 | 5 10 0 10 0 0 5 0 0 | 32 * * * * x3o3x . x4/3*c ♦ 192 | 192 192 0 96 | 64 96 0 96 64 0 48 0 | 16 0 32 0 24 0 0 8 0 | * 10 * * * x3o . x4x ♦ 24 | 24 0 12 12 | 8 0 12 12 0 0 0 3 | 0 4 4 0 0 3 0 0 0 | * * 80 * * x . x3x4x4/3*c ♦ 96 | 48 48 48 48 | 0 24 24 24 0 16 12 12 | 0 0 0 8 6 6 0 0 2 | * * * 40 * . o3x3x4x4/3*c ♦ 192 | 0 192 96 96 | 0 0 0 0 64 64 48 24 | 0 0 0 0 0 0 16 8 8 | * * * * 10
© 2004-2025 | top of page |