Acronym naquiptant
Name penteractiquasiprismatotruncated penteractitriacontaditeron
Field of sections
 ©
Circumradius sqrt[19-6 sqrt(2)]/2 = 1.621320
Vertex figure
 ©
Coordinates ((1+sqrt(2))/2, (sqrt(2)-1)/2, (sqrt(2)-1)/2, (2 sqrt(2)-1)/2, 1/2)   & all permutations, all changes of sign
Colonel of regiment (is itself locally convex – uniform polyteral members:
by cells: cotcope giphado pittip prip quiproh thaquitoth thaquitpath todip
naquiptant 4000321010080
noqraptant 0103200101080
& others)
Face vector 1920, 5760, 5520, 1920, 172
Confer
general polytopal classes:
Wythoffian polytera  
External
links
hedrondude   polytopewiki  

As abstract polytope naquiptant is isomorphic to niptant, thereby interchanging the roles of octagrams and octagons, resp. replacing quith by tic and interchanging op and stop, resp. replacing quiproh by proh, todip by tistodip and thaquitoth by thatoth.


Incidence matrix according to Dynkin symbol

x3o3x3x4x4/3*c

. . . . .      | 1920 |    2    2   1   1 |   1   2   2   2   1   2   2   1 |   1   1   1   2   2   2   1  1  2 |  1  1  1  2  1
---------------+------+-------------------+---------------------------------+-----------------------------------+---------------
x . . . .      |    2 | 1920    *   *   * |   1   1   1   1   0   0   0   0 |   1   1   1   1   1   1   0  0  0 |  1  1  1  1  0
. . x . .      |    2 |    * 1920   *   * |   0   1   0   0   1   1   1   0 |   1   0   0   1   1   0   1  1  1 |  1  1  0  1  1
. . . x .      |    2 |    *    * 960   * |   0   0   2   0   0   2   0   1 |   0   1   0   2   0   2   1  0  2 |  1  0  1  2  1
. . . . x      |    2 |    *    *   * 960 |   0   0   0   2   0   0   2   1 |   0   0   1   0   2   2   0  1  2 |  0  1  1  2  1
---------------+------+-------------------+---------------------------------+-----------------------------------+---------------
x3o . . .      |    3 |    3    0   0   0 | 640   *   *   *   *   *   *   * |   1   1   1   0   0   0   0  0  0 |  1  1  1  0  0
x . x . .      |    4 |    2    2   0   0 |   * 960   *   *   *   *   *   * |   1   0   0   1   1   0   0  0  0 |  1  1  0  1  0
x . . x .      |    4 |    2    0   2   0 |   *   * 960   *   *   *   *   * |   0   1   0   1   0   1   0  0  0 |  1  0  1  1  0
x . . . x      |    4 |    2    0   0   2 |   *   *   * 960   *   *   *   * |   0   0   1   0   1   1   0  0  0 |  0  1  1  1  0
. o3x . .      |    3 |    0    3   0   0 |   *   *   *   * 640   *   *   * |   1   0   0   0   0   0   1  1  0 |  1  1  0  0  1
. . x3x .      |    6 |    0    3   3   0 |   *   *   *   *   * 640   *   * |   0   0   0   1   0   0   1  0  1 |  1  0  0  1  1
. . x . x4/3*c |    8 |    0    4   0   4 |   *   *   *   *   *   * 480   * |   0   0   0   0   1   0   0  1  1 |  0  1  0  1  1
. . . x4x      |    8 |    0    0   4   4 |   *   *   *   *   *   *   * 240 |   0   0   0   0   0   2   0  0  2 |  0  0  1  2  1
---------------+------+-------------------+---------------------------------+-----------------------------------+---------------
x3o3x . .         12 |   12   12   0   0 |   4   6   0   0   4   0   0   0 | 160   *   *   *   *   *   *  *  * |  1  1  0  0  0
x3o . x .          6 |    6    0   3   0 |   2   0   3   0   0   0   0   0 |   * 320   *   *   *   *   *  *  * |  1  0  1  0  0
x3o . . x          6 |    6    0   0   3 |   2   0   0   3   0   0   0   0 |   *   * 320   *   *   *   *  *  * |  0  1  1  0  0
x . x3x .         12 |    6    6   6   0 |   0   3   3   0   0   2   0   0 |   *   *   * 320   *   *   *  *  * |  1  0  0  1  0
x . x . x4/3*c    16 |    8    8   0   8 |   0   4   0   4   0   0   2   0 |   *   *   *   * 240   *   *  *  * |  0  1  0  1  0
x . . x4x         16 |    8    0   8   8 |   0   0   4   4   0   0   0   2 |   *   *   *   *   * 240   *  *  * |  0  0  1  1  0
. o3x3x .         12 |    0   12   6   0 |   0   0   0   0   4   4   0   0 |   *   *   *   *   *   * 160  *  * |  1  0  0  0  1
. o3x . x4/3*c    24 |    0   24   0  12 |   0   0   0   0   8   0   6   0 |   *   *   *   *   *   *   * 80  * |  0  1  0  0  1
. . x3x4x4/3*c    48 |    0   24  24  24 |   0   0   0   0   0   8   6   6 |   *   *   *   *   *   *   *  * 80 |  0  0  0  1  1
---------------+------+-------------------+---------------------------------+-----------------------------------+---------------
x3o3x3x .         60 |   60   60  30   0 |  20  30  30   0  20  20   0   0 |   5  10   0  10   0   0   5  0  0 | 32  *  *  *  *
x3o3x . x4/3*c   192 |  192  192   0  96 |  64  96   0  96  64   0  48   0 |  16   0  32   0  24   0   0  8  0 |  * 10  *  *  *
x3o . x4x         24 |   24    0  12  12 |   8   0  12  12   0   0   0   3 |   0   4   4   0   0   3   0  0  0 |  *  * 80  *  *
x . x3x4x4/3*c    96 |   48   48  48  48 |   0  24  24  24   0  16  12  12 |   0   0   0   8   6   6   0  0  2 |  *  *  * 40  *
. o3x3x4x4/3*c   192 |    0  192  96  96 |   0   0   0   0  64  64  48  24 |   0   0   0   0   0   0  16  8  8 |  *  *  *  * 10

© 2004-2024
top of page