Acronym n,n,k-tip Name n-gon - n-gon - k-gon - triprism Circumradius sqrt[1/(2 sin2(π/n))+1/(4 sin2(π/k))] Especially n,n,n-tip (k=n)   n,n,4-tip (k=4)   k,tes-dip (n=4)   trittip (n=3, k=3)   titstip (n=3, k=4)   tithtip (n=3, k=6)   tratess (n=4, k=3)   ax (n=4, k=4)   pettip (n=5, k=5)   hittip (n=6, k=6) Confer general triprisms: n,m,k-tip

Incidence matrix according to Dynkin symbol

```xno xno xko   (n>2,k>2)

. . . . . . | nnk |   2   2   2 |  1   4   4  1   4  1 |  2  2  2   8  2  2  2 | 1  4 1  4  4 1 | 2 2 2
------------+-----+-------------+----------------------+-----------------------+----------------+------
x . . . . . |   2 | nnk   *   * |  1   2   2  0   0  0 |  2  2  1   4  1  0  0 | 1  4 1  2  2 0 | 2 2 1
. . x . . . |   2 |   * nnk   * |  0   2   0  1   2  0 |  1  0  2   4  0  2  1 | 1  2 0  4  2 1 | 2 1 2
. . . . x . |   2 |   *   * nnk |  0   0   2  0   2  1 |  0  1  0   4  2  1  2 | 0  2 1  2  4 1 | 1 2 2
------------+-----+-------------+----------------------+-----------------------+----------------+------
xno . . . . |   n |   n   0   0 | nk   *   *  *   *  * |  2  2  0   0  0  0  0 | 1  4 1  0  0 0 | 2 2 0
x . x . . . |   4 |   2   2   0 |  * nnk   *  *   *  * |  1  0  1   2  0  0  0 | 1  2 0  2  1 0 | 2 1 1
x . . . x . |   4 |   2   0   2 |  *   * nnk  *   *  * |  0  1  0   2  1  0  0 | 0  2 1  1  2 0 | 1 2 1
. . xno . . |   n |   0   n   0 |  *   *   * nk   *  * |  0  0  2   0  0  2  0 | 1  0 0  4  0 1 | 2 0 2
. . x . x . |   4 |   0   2   2 |  *   *   *  * nnk  * |  0  0  0   2  0  1  1 | 0  1 0  2  2 1 | 1 1 2
. . . . xko |   k |   0   0   k |  *   *   *  *   * nn |  0  0  0   0  2  0  2 | 0  0 1  0  4 1 | 0 2 2
------------+-----+-------------+----------------------+-----------------------+----------------+------
xno x . . . ♦  2n |  2n   n   0 |  2   n   0  0   0  0 | nk  *  *   *  *  *  * | 1  2 0  0  0 0 | 2 1 0
xno . . x . ♦  2n |  2n   0   n |  2   0   n  0   0  0 |  * nk  *   *  *  *  * | 0  2 1  0  0 0 | 1 2 0
x . xno . . ♦  2n |   n  2n   0 |  0   n   0  2   0  0 |  *  * nk   *  *  *  * | 1  0 0  2  0 0 | 2 0 1
x . x . x . ♦   8 |   4   4   4 |  0   2   2  0   2  0 |  *  *  * nnk  *  *  * | 0  1 0  1  1 0 | 1 1 1
x . . . xko ♦  2k |   k   0  2k |  0   0   k  0   0  2 |  *  *  *   * nn  *  * | 0  0 1  0  2 0 | 0 2 1
. . xno x . ♦  2n |   0  2n   n |  0   0   0  2   n  0 |  *  *  *   *  * nk  * | 0  0 0  2  0 1 | 1 0 2
. . x . xko ♦  2k |   0   k  2k |  0   0   0  0   k  2 |  *  *  *   *  *  * nn | 0  0 0  0  2 1 | 0 1 2
------------+-----+-------------+----------------------+-----------------------+----------------+------
xno xno . . ♦  nn |  nn  nn   0 |  n  nn   0  n   0  0 |  n  0  n   0  0  0  0 | k  * *  *  * * | 2 0 0
xno x . x . ♦  4n |  4n  2n  2n |  4  2n  2n  0   n  0 |  2  2  0   n  0  0  0 | * nk *  *  * * | 1 1 0
xno . . xko ♦  nk |  nk   0  nk |  k   0  nk  0   0  n |  0  k  0   0  n  0  0 | *  * n  *  * * | 0 2 0
x . xno x . ♦  4n |  2n  4n  2n |  0  2n   n  4  2n  0 |  0  0  2   n  0  2  0 | *  * * nk  * * | 1 0 1
x . x . xko ♦  4k |  2k  2k  4k |  0   k  2k  0  2k  4 |  0  0  0   k  2  0  2 | *  * *  * nn * | 0 1 1
. . xno xko ♦  nk |   0  nk  nk |  0   0   0  k  nk  n |  0  0  0   0  0  k  n | *  * *  *  * n | 0 0 2
------------+-----+-------------+----------------------+-----------------------+----------------+------
xno xno x . ♦ 2nn | 2nn 2nn  nn | 2n 2nn  nn 2n  nn  0 | 2n  n 2n  nn  0  n  0 | 2  n 0  n  0 0 | k * *
xno x . xko ♦ 2nk | 2nk  nk 2nk | 2k  nk 2nk  0  nk 2n |  k 2k  0  nk 2n  0  n | 0  k 2  0  n 0 | * n *
x . xno xko ♦ 2nk |  nk 2nk 2nk |  0  nk  nk 2k 2nk 2n |  0  0  k  nk  n 2k 2n | 0  0 0  k  n 2 | * * n
```
```or
. . . . . .    | nnk |    4   2 |   2   4    8  1 |   4   4   8   4 | 1   8  2  4 | 2  4
---------------+-----+----------+-----------------+-----------------+-------------+-----
x . . . . .  & |   2 | 2nnk   * |   1   2    2  0 |   3   2   4   1 | 1   6  1  2 | 2  3
. . . . x .    |   2 |    * nnk |   0   0    4  1 |   0   2   4   4 | 0   4  2  4 | 1  4
---------------+-----+----------+-----------------+-----------------+-------------+-----
xno . . . .  & |   n |    n   0 | 2nk   *    *  * |   2   2   0   0 | 1   4  1  0 | 2  2
x . x . . .    |   4 |    4   0 |   * nnk    *  * |   2   0   2   0 | 1   4  0  1 | 2  2
x . . . x .  & |   4 |    2   2 |   *   * 2nnk  * |   0   1   2   1 | 0   3  1  2 | 1  3
. . . . xko    |   k |    0   k |   *   *    * nn |   0   0   0   4 | 0   0  2  4 | 0  4
---------------+-----+----------+-----------------+-----------------+-------------+-----
xno x . . .  & ♦  2n |   3n   0 |   2   n    0  0 | 2nk   *   *   * | 1   2  0  0 | 2  1
xno . . x .  & ♦  2n |   2n   n |   2   0    n  0 |   * 2nk   *   * | 0   2  1  0 | 1  2
x . x . x .    ♦   8 |    8   4 |   0   2    4  0 |   *   * nnk   * | 0   2  0  1 | 1  2
x . . . xko  & ♦  2k |    k  2k |   0   0    k  2 |   *   *   * 2nn | 0   0  1  2 | 0  3
---------------+-----+----------+-----------------+-----------------+-------------+-----
xno xno . .    ♦  nn |  2nn   0 |  2n  nn    0  0 |  2n   0   0   0 | k   *  *  * | 2  0
xno x . x .  & ♦  4n |   6n  2n |   4  2n   3n  0 |   2   2   n   0 | * 2nk  *  * | 1  1
xno . . xko  & ♦  nk |   nk  nk |   k   0   nk  n |   0   k   0   n | *   * 2n  * | 0  2
x . x . xko    ♦  4k |   4k  4k |   0   k   4k  4 |   0   0   k   4 | *   *  * nn | 0  2
---------------+-----+----------+-----------------+-----------------+-------------+-----
xno xno x .    ♦ 2nn |  4nn  nn |  4n 2nn  2nn  0 |  4n  2n  nn   0 | 2  2n  0  0 | k  *
xno x . xko  & ♦ 2nk |  3nk 2nk |  2k  nk  3nk 2n |   k  2k  nk  3n | 0   k  2  n | * 2n
```