Acronym | 4,n,n-tip |
Name | square - n-gon - n-gon - triprism |
Circumradius | sqrt[1/2+1/(2 sin2(π/n))] |
Face vector | 4n2, 12n2, 13n2+8n, 6n2+16n, n2+10n+4, 2n+4 |
Especially | 3,3,4-tip (n=3) ax (n=4) shihtip (n=6) |
Confer |
|
Incidence matrix according to Dynkin symbol
xno xno x4o (n>2) . . . . . . | 4nn | 2 2 2 | 1 4 4 1 4 1 | 2 2 2 8 2 2 2 | 1 4 1 4 4 1 | 2 2 2 ------------+-----+-------------+----------------------+-----------------------+----------------+------ x . . . . . | 2 | 4nn * * | 1 2 2 0 0 0 | 2 2 1 4 1 0 0 | 1 4 1 2 2 0 | 2 2 1 . . x . . . | 2 | * 4nn * | 0 2 0 1 2 0 | 1 0 2 4 0 2 1 | 1 2 0 4 2 1 | 2 1 2 . . . . x . | 2 | * * 4nn | 0 0 2 0 2 1 | 0 1 0 4 2 1 2 | 0 2 1 2 4 1 | 1 2 2 ------------+-----+-------------+----------------------+-----------------------+----------------+------ xno . . . . | n | n 0 0 | 4n * * * * * | 2 2 0 0 0 0 0 | 1 4 1 0 0 0 | 2 2 0 x . x . . . | 4 | 2 2 0 | * 4nn * * * * | 1 0 1 2 0 0 0 | 1 2 0 2 1 0 | 2 1 1 x . . . x . | 4 | 2 0 2 | * * 4nn * * * | 0 1 0 2 1 0 0 | 0 2 1 1 2 0 | 1 2 1 . . xno . . | n | 0 n 0 | * * * 4n * * | 0 0 2 0 0 2 0 | 1 0 0 4 0 1 | 2 0 2 . . x . x . | 4 | 0 2 2 | * * * * 4nn * | 0 0 0 2 0 1 1 | 0 1 0 2 2 1 | 1 1 2 . . . . x4o | 4 | 0 0 4 | * * * * * nn | 0 0 0 0 2 0 2 | 0 0 1 0 4 1 | 0 2 2 ------------+-----+-------------+----------------------+-----------------------+----------------+------ xno x . . . ♦ 2n | 2n n 0 | 2 n 0 0 0 0 | 4n * * * * * * | 1 2 0 0 0 0 | 2 1 0 xno . . x . ♦ 2n | 2n 0 n | 2 0 n 0 0 0 | * 4n * * * * * | 0 2 1 0 0 0 | 1 2 0 x . xno . . ♦ 2n | n 2n 0 | 0 n 0 2 0 0 | * * 4n * * * * | 1 0 0 2 0 0 | 2 0 1 x . x . x . ♦ 8 | 4 4 4 | 0 2 2 0 2 0 | * * * 4nn * * * | 0 1 0 1 1 0 | 1 1 1 x . . . x4o ♦ 8 | 4 0 8 | 0 0 4 0 0 2 | * * * * nn * * | 0 0 1 0 2 0 | 0 2 1 . . xno x . ♦ 2n | 0 2n n | 0 0 0 2 n 0 | * * * * * 4n * | 0 0 0 2 0 1 | 1 0 2 . . x . x4o ♦ 8 | 0 4 8 | 0 0 0 0 4 2 | * * * * * * nn | 0 0 0 0 2 1 | 0 1 2 ------------+-----+-------------+----------------------+-----------------------+----------------+------ xno xno . . ♦ nn | nn nn 0 | n nn 0 n 0 0 | n 0 n 0 0 0 0 | 4 * * * * * | 2 0 0 xno x . x . ♦ 4n | 4n 2n 2n | 4 2n 2n 0 n 0 | 2 2 0 n 0 0 0 | * 4n * * * * | 1 1 0 xno . . x4o ♦ 4n | 4n 0 4n | 4 0 4n 0 0 n | 0 4 0 0 n 0 0 | * * n * * * | 0 2 0 x . xno x . ♦ 4n | 2n 4n 2n | 0 2n n 4 2n 0 | 0 0 2 n 0 2 0 | * * * 4n * * | 1 0 1 x . x . x4o ♦ 16 | 8 8 16 | 0 4 8 0 8 4 | 0 0 0 4 2 0 2 | * * * * nn * | 0 1 1 . . xno x4o ♦ 4n | 0 4n 4n | 0 0 0 4 4n n | 0 0 0 0 0 4 n | * * * * * n | 0 0 2 ------------+-----+-------------+----------------------+-----------------------+----------------+------ xno xno x . ♦ 2nn | 2nn 2nn nn | 2n 2nn nn 2n nn 0 | 2n n 2n nn 0 n 0 | 2 n 0 n 0 0 | 4 * * xno x . x4o ♦ 8n | 8n 4n 8n | 8 4n 8n 0 4n 2n | 4 8 0 4n 2n 0 n | 0 4 2 0 n 0 | * n * x . xno x4o ♦ 8n | 4n 8n 8n | 0 4n 4n 8 8n 2n | 0 0 4 4n n 8 2n | 0 0 0 4 n 2 | * * n
or . . . . . . | 4nn | 4 2 | 2 4 8 1 | 4 4 8 4 | 1 8 2 4 | 2 4 ---------------+-----+---------+---------------+---------------+------------+----- x . . . . . & | 2 | 8nn * | 1 2 2 0 | 3 2 4 1 | 1 6 1 2 | 2 3 . . . . x . | 2 | * 4nn | 0 0 4 1 | 0 2 4 4 | 0 4 2 4 | 1 4 ---------------+-----+---------+---------------+---------------+------------+----- xno . . . . & | n | n 0 | 8n * * * | 2 2 0 0 | 1 4 1 0 | 2 2 x . x . . . | 4 | 4 0 | * 4nn * * | 2 0 2 0 | 1 4 0 1 | 2 2 x . . . x . & | 4 | 2 2 | * * 8nn * | 0 1 2 1 | 0 3 1 2 | 1 3 . . . . x4o | 4 | 0 4 | * * * nn | 0 0 0 4 | 0 0 2 4 | 0 4 ---------------+-----+---------+---------------+---------------+------------+----- xno x . . . & ♦ 2n | 3n 0 | 2 n 0 0 | 8n * * * | 1 2 0 0 | 2 1 xno . . x . & ♦ 2n | 2n n | 2 0 n 0 | * 8n * * | 0 2 1 0 | 1 2 x . x . x . ♦ 8 | 8 4 | 0 2 4 0 | * * 4nn * | 0 2 0 1 | 1 2 x . . . x4o & ♦ 8 | 4 8 | 0 0 4 2 | * * * 2nn | 0 0 1 2 | 0 3 ---------------+-----+---------+---------------+---------------+------------+----- xno xno . . ♦ nn | 2nn 0 | 2n nn 0 0 | 2n 0 0 0 | 4 * * * | 2 0 xno x . x . & ♦ 4n | 6n 2n | 4 2n 3n 0 | 2 2 n 0 | * 8n * * | 1 1 xno . . x4o & ♦ 4n | 4n 4n | 4 0 4n n | 0 4 0 n | * * 2n * | 0 2 x . x . x4o ♦ 16 | 16 16 | 0 4 16 4 | 0 0 4 4 | * * * nn | 0 2 ---------------+-----+---------+---------------+---------------+------------+----- xno xno x . ♦ 2nn | 4nn nn | 4n 2nn 2nn 0 | 4n 2n nn 0 | 2 2n 0 0 | 4 * xno x . x4o & ♦ 8n | 8n 8n | 8 4n 12n 2n | 4 8 4n 3n | 0 4 2 n | * 2n
x x xno xno (n>2) . . . . . . | 4nn | 1 1 2 2 | 1 2 2 2 2 1 4 1 | 2 2 1 4 1 1 4 1 2 2 | 1 4 1 2 2 2 2 1 | 2 2 1 1 ------------+-----+-----------------+------------------------------+---------------------------------+----------------------+-------- x . . . . . | 2 | 2nn * * * | 1 2 2 0 0 0 0 0 | 2 2 1 4 1 0 0 0 0 0 | 1 4 1 2 2 0 0 0 | 2 2 1 0 . x . . . . | 2 | * 2nn * * | 1 0 0 2 2 0 0 0 | 2 2 0 0 0 1 4 1 0 0 | 1 4 1 0 0 2 2 0 | 2 2 0 1 . . x . . . | 2 | * * 4nn * | 0 1 0 1 0 1 2 0 | 1 0 1 2 0 1 2 0 2 1 | 1 2 0 2 1 2 1 1 | 2 1 1 1 . . . . x . | 2 | * * * 4nn | 0 0 1 0 1 0 2 1 | 0 1 0 2 1 0 2 1 1 2 | 0 2 1 1 2 1 2 1 | 1 2 1 1 ------------+-----+-----------------+------------------------------+---------------------------------+----------------------+-------- x x . . . . | 4 | 2 2 0 0 | nn * * * * * * * | 2 2 0 0 0 0 0 0 0 0 | 1 4 1 0 0 0 0 0 | 2 2 0 0 x . x . . . | 4 | 2 0 2 0 | * 2nn * * * * * * | 1 0 1 2 0 0 0 0 0 0 | 1 2 0 2 1 0 0 0 | 2 1 1 0 x . . . x . | 4 | 2 0 0 2 | * * 2nn * * * * * | 0 1 0 2 1 0 0 0 0 0 | 0 2 1 1 2 0 0 0 | 1 2 1 0 . x x . . . | 4 | 0 2 2 0 | * * * 2nn * * * * | 1 0 0 0 0 1 2 0 0 0 | 1 2 0 0 0 2 1 0 | 2 1 0 1 . x . . x . | 4 | 0 2 0 2 | * * * * 2nn * * * | 0 1 0 0 0 0 2 1 0 0 | 0 2 1 0 0 1 2 0 | 1 2 0 1 . . xno . . | n | 0 0 n 0 | * * * * * 4n * * | 0 0 1 0 0 1 0 0 2 0 | 1 0 0 2 0 2 0 1 | 2 0 1 1 . . x . x . | 4 | 0 0 2 2 | * * * * * * 4nn * | 0 0 0 1 0 0 1 0 1 1 | 0 1 0 1 1 1 1 1 | 1 1 1 1 . . . . xno | n | 0 0 0 n | * * * * * * * 4n | 0 0 0 0 1 0 0 1 0 2 | 0 0 1 0 2 0 2 1 | 0 2 1 1 ------------+-----+-----------------+------------------------------+---------------------------------+----------------------+-------- x x x . . . ♦ 8 | 4 4 4 0 | 2 2 0 2 0 0 0 0 | nn * * * * * * * * * | 1 2 0 0 0 0 0 0 | 2 1 0 0 x x . . x . ♦ 8 | 4 4 0 4 | 2 0 2 0 2 0 0 0 | * nn * * * * * * * * | 0 2 1 0 0 0 0 0 | 1 2 0 0 x . xno . . ♦ 2n | n 0 2n 0 | 0 n 0 0 0 2 0 0 | * * 2n * * * * * * * | 1 0 0 2 0 0 0 0 | 2 0 1 0 x . x . x . ♦ 8 | 4 0 4 4 | 0 2 2 0 0 0 2 0 | * * * 2nn * * * * * * | 0 1 0 1 1 0 0 0 | 1 1 1 0 x . . . xno ♦ 2n | n 0 0 2n | 0 0 n 0 0 0 0 2 | * * * * 2n * * * * * | 0 0 1 0 2 0 0 0 | 0 2 1 0 . x xno . . ♦ 2n | 0 n 2n 0 | 0 0 0 n 0 2 0 0 | * * * * * 2n * * * * | 1 0 0 0 0 2 0 0 | 2 0 0 1 . x x . x . ♦ 8 | 0 4 4 4 | 0 0 0 2 2 0 2 0 | * * * * * * 2nn * * * | 0 1 0 0 0 1 1 0 | 1 1 0 1 . x . . xno ♦ 2n | 0 n 0 2n | 0 0 0 0 n 0 0 2 | * * * * * * * 2n * * | 0 0 1 0 0 0 2 0 | 0 2 0 1 . . xno x . ♦ 2n | 0 0 2n n | 0 0 0 0 0 2 n 0 | * * * * * * * * 4n * | 0 0 0 1 0 1 0 1 | 1 0 1 1 . . x . xno ♦ 2n | 0 0 n 2n | 0 0 0 0 0 0 n 2 | * * * * * * * * * 4n | 0 0 0 0 1 0 1 1 | 0 1 1 1 ------------+-----+-----------------+------------------------------+---------------------------------+----------------------+-------- x x xno . . ♦ 4n | 2n 2n 4n 0 | n 2n 0 2n 0 4 0 0 | n 0 2 0 0 2 0 0 0 0 | n * * * * * * * | 2 0 0 0 x x x . x . ♦ 16 | 8 8 8 8 | 4 4 4 4 4 0 4 0 | 2 2 0 2 0 0 2 0 0 0 | * nn * * * * * * | 1 1 0 0 x x . . xno ♦ 4n | 2n 2n 0 4n | n 0 2n 0 2n 0 0 4 | 0 n 0 0 2 0 0 2 0 0 | * * n * * * * * | 0 2 0 0 x . xno x . ♦ 4n | 2n 0 4n 2n | 0 2n n 0 0 4 2n 0 | 0 0 2 n 0 0 0 0 2 0 | * * * 2n * * * * | 1 0 1 0 x . x . xno ♦ 4n | 2n 0 2n 4n | 0 n 2n 0 0 0 2n 4 | 0 0 0 n 2 0 0 0 0 2 | * * * * 2n * * * | 0 1 1 0 . x xno x . ♦ 4n | 0 2n 4n 2n | 0 0 0 2n n 4 2n 0 | 0 0 0 0 0 2 n 0 2 0 | * * * * * 2n * * | 1 0 0 1 . x x . xno ♦ 4n | 0 2n 2n 4n | 0 0 0 n 2n 0 2n 4 | 0 0 0 0 0 0 n 2 0 2 | * * * * * * 2n * | 0 1 0 1 . . xno xno ♦ nn | 0 0 nn nn | 0 0 0 0 0 n nn n | 0 0 0 0 0 0 0 0 n n | * * * * * * * 4 | 0 0 1 1 ------------+-----+-----------------+------------------------------+---------------------------------+----------------------+-------- x x xno x . ♦ 8n | 4n 4n 8n 4n | 2n 4n 2n 4n 2n 8 4n 0 | 2n n 4 2n 0 4 2n 0 4 0 | 2 n 0 2 0 2 0 0 | n * * * x x x . xno ♦ 8n | 4n 4n 4n 8n | 2n 2n 4n 2n 4n 0 4n 8 | n 2n 0 2n 4 0 2n 4 0 4 | 0 n 2 0 2 0 2 0 | * n * * x . xno xno ♦ 2nn | nn 0 2nn 2nn | 0 nn nn 0 0 2n 2nn 2n | 0 0 n nn n 0 0 0 2n 2n | 0 0 0 n n 0 0 2 | * * 2 * . x xno xno ♦ 2nn | 0 nn 2nn 2nn | 0 0 0 nn nn 2n 2nn 2n | 0 0 0 0 0 n nn n 2n 2n | 0 0 0 0 0 n n 2 | * * * 2
© 2004-2025 | top of page |