Acronym | n,n-dippip |
Name | n-gon - n-gon duoprismatic prism |
Circumradius | sqrt[1/4+1/(2 sin2(π/n))] |
Confer | n,m-dippip |
Face vector | 2n2, 5n2, 4n2+4n, n2+6n, 2n+2 |
Especially | tratrip (n=3) pent (n=4) pepip (n=5) hahip (n=6) oop (n=8) |
Confer |
|
Incidence matrix according to Dynkin symbol
x xno xno (n>2) . . . . . | 2nn | 1 2 2 | 2 2 1 4 1 | 1 4 1 2 2 | 2 2 1 ----------+-----+------------+-----------------+--------------+------ x . . . . | 2 | nn * * | 2 2 0 0 0 | 1 4 1 0 0 | 2 2 0 . x . . . | 2 | * 2nn * | 1 0 1 2 0 | 1 2 0 2 1 | 2 1 1 . . . x . | 2 | * * 2nn | 0 1 0 2 1 | 0 2 1 1 2 | 1 2 1 ----------+-----+------------+-----------------+--------------+------ x x . . . | 4 | 2 2 0 | nn * * * * | 1 2 0 0 0 | 2 1 0 x . . x . | 4 | 2 0 2 | * nn * * * | 0 2 1 0 0 | 1 2 0 . xno . . | n | 0 n 0 | * * 2n * * | 1 0 0 2 0 | 2 0 1 . x . x . | 4 | 0 2 2 | * * * 2nn * | 0 1 0 1 1 | 1 1 1 . . . xno | n | 0 0 n | * * * * 2n | 0 0 1 0 2 | 0 2 1 ----------+-----+------------+-----------------+--------------+------ x xno . . ♦ 2n | n 2n 0 | n 0 2 0 0 | n * * * * | 2 0 0 x x . x . ♦ 8 | 4 4 4 | 2 2 0 2 0 | * nn * * * | 1 1 0 x . . xno ♦ 2n | n 0 2n | 0 n 0 0 2 | * * n * * | 0 2 0 . xno x . ♦ 2n | 0 2n n | 0 0 2 n 0 | * * * 2n * | 1 0 1 . x . xno ♦ 2n | 0 n 2n | 0 0 0 n 2 | * * * * 2n | 0 1 1 ----------+-----+------------+-----------------+--------------+------ x xno x . ♦ 4n | 2n 4n 2n | 2n n 4 2n 0 | 2 n 0 2 0 | n * * x x . xno ♦ 4n | 2n 2n 4n | n 2n 0 2n 4 | 0 n 2 0 2 | * n * . xno xno ♦ nn | 0 nn nn | 0 0 n nn n | 0 0 0 n n | * * 2
or . . . . . | 2nn | 1 4 | 4 2 4 | 2 4 4 | 4 1 -------------+-----+--------+------------+----------+----- x . . . . | 2 | nn * | 4 0 0 | 2 4 0 | 4 0 . x . . . & | 2 | * 4nn | 1 1 2 | 1 2 3 | 3 1 -------------+-----+--------+------------+----------+----- x x . . . & | 4 | 2 2 | 2nn * * | 1 2 0 | 3 0 . xno . . & | n | 0 n | * 4n * | 1 0 2 | 2 1 . x . x . | 4 | 0 4 | * * 2nn | 0 1 2 | 2 1 -------------+-----+--------+------------+----------+----- x xno . . & ♦ 2n | n 2n | n 2 0 | 2n * * | 2 0 x x . x . ♦ 8 | 4 8 | 4 0 2 | * nn * | 2 0 . xno x . & ♦ 2n | 0 3n | 0 2 n | * * 4n | 1 1 -------------+-----+--------+------------+----------+----- x xno x . & ♦ 4n | 2n 6n | 3n 4 2n | 2 n 2 | 2n * . xno xno ♦ nn | 0 2nn | 0 2n nn | 0 0 2n | * 2
xxnoo xxnoo&#x (n>2) → height = 1
({n}{n}-dip || {n}{n}-dip)
o.no. o.no. | nn * | 2 2 1 0 0 | 1 4 1 2 2 0 0 0 | 2 2 1 4 1 0 0 | 1 2 2 0
.on.o .on.o | * nn | 0 0 1 2 2 | 0 0 0 2 2 1 4 1 | 0 0 1 4 1 2 2 | 0 2 2 1
---------------+-------+----------------+---------------------+----------------+--------
x. .. .. .. | 2 0 | nn * * * * | 1 2 0 1 0 0 0 0 | 2 1 1 2 0 0 0 | 1 2 1 0
.. .. x. .. | 2 0 | * nn * * * | 0 2 1 0 1 0 0 0 | 1 2 0 2 1 0 0 | 1 1 2 0
oonoo oonoo&#x | 1 1 | * * nn * * | 0 0 0 2 2 0 0 0 | 0 0 1 4 1 0 0 | 0 2 2 0
.x .. .. .. | 0 2 | * * * nn * | 0 0 0 1 0 1 2 0 | 0 0 1 2 0 2 1 | 0 2 1 1
.. .. .x .. | 0 2 | * * * * nn | 0 0 0 0 1 0 2 1 | 0 0 0 2 1 1 2 | 0 1 2 1
---------------+-------+----------------+---------------------+----------------+--------
x.no. .. .. | n 0 | n 0 0 0 0 | n * * * * * * * | 2 0 1 0 0 0 0 | 1 2 0 0
x. .. x. .. | 4 0 | 2 2 0 0 0 | * nn * * * * * * | 1 1 0 1 0 0 0 | 1 1 1 0
.. .. x.no. | n 0 | 0 n 0 0 0 | * * n * * * * * | 0 2 0 0 1 0 0 | 1 0 2 0
xx .. .. ..&#x | 2 2 | 1 0 2 1 0 | * * * nn * * * * | 0 0 1 2 0 0 0 | 0 2 1 0
.. .. xx ..&#x | 2 2 | 0 1 2 0 1 | * * * * nn * * * | 0 0 0 2 1 0 0 | 0 1 2 0
.xn.o .. .. | 0 n | 0 0 0 n 0 | * * * * * n * * | 0 0 1 0 0 2 0 | 0 2 0 1
.x .. .x .. | 0 4 | 0 0 0 2 2 | * * * * * * nn * | 0 0 0 1 0 1 1 | 0 1 1 1
.. .. .xn.o | 0 n | 0 0 0 0 n | * * * * * * * n | 0 0 0 0 1 0 2 | 0 0 2 1
---------------+-------+----------------+---------------------+----------------+--------
x.no. x. .. ♦ 2n 0 | 2n n 0 0 0 | 2 n 0 0 0 0 0 0 | n * * * * * * | 1 1 0 0
x. .. x.no. ♦ 2n 0 | n 2n 0 0 0 | 0 n 2 0 0 0 0 0 | * n * * * * * | 1 0 1 0
xxnoo .. ..&#x ♦ n n | n 0 n n 0 | 1 0 0 n 0 1 0 0 | * * n * * * * | 0 2 0 0
xx .. xx ..&#x ♦ 4 4 | 2 2 4 2 2 | 0 1 0 2 2 0 1 0 | * * * nn * * * | 0 1 1 0
.. .. xxnoo&#x ♦ n n | 0 n n 0 n | 0 0 1 0 n 0 0 1 | * * * * n * * | 0 0 2 0
.xn.o .x .. ♦ 0 2n | 0 0 0 2n n | 0 0 0 0 0 2 n 0 | * * * * * n * | 0 1 0 1
.x .. .xn.o ♦ 0 2n | 0 0 0 n 2n | 0 0 0 0 0 0 n 2 | * * * * * * n | 0 0 1 1
---------------+-------+----------------+---------------------+----------------+--------
x.no. x.no. ♦ nn 0 | nn nn 0 0 0 | n nn n 0 0 0 0 0 | n n 0 0 0 0 0 | 1 * * *
xxnoo xx ..&#x ♦ 2n 2n | 2n n 2n 2n n | 2 n 0 2n n 2 n 0 | 1 0 2 n 0 1 0 | * n * *
xx .. xxnoo&#x ♦ 2n 2n | n 2n 2n n 2n | 0 n 2 n 2n 0 n 2 | 0 1 0 n 2 0 1 | * * n *
.xn.o .xn.o ♦ 0 nn | 0 0 0 nn nn | 0 0 0 0 0 n nn n | 0 0 0 0 0 n n | * * * 1
© 2004-2025 | top of page |