Acronym n,n-dippip Name n-gon - n-gon duoprismatic prism Circumradius sqrt[1/4+1/(2 sin2(π/n))] Confer n,m-dippip Especially tratrip (n=3)   pent (n=4)   pepip (n=5)   hahip (n=6)   oop (n=8) Confer general polytopal classes: segmentotera

Incidence matrix according to Dynkin symbol

```x xno xno   (n>2)

. . . . . | 2nn |  1   2   2 |  2  2  1   4  1 | 1  4 1  2  2 | 2 2 1
----------+-----+------------+-----------------+--------------+------
x . . . . |   2 | nn   *   * |  2  2  0   0  0 | 1  4 1  0  0 | 2 2 0
. x . . . |   2 |  * 2nn   * |  1  0  1   2  0 | 1  2 0  2  1 | 2 1 1
. . . x . |   2 |  *   * 2nn |  0  1  0   2  1 | 0  2 1  1  2 | 1 2 1
----------+-----+------------+-----------------+--------------+------
x x . . . |   4 |  2   2   0 | nn  *  *   *  * | 1  2 0  0  0 | 2 1 0
x . . x . |   4 |  2   0   2 |  * nn  *   *  * | 0  2 1  0  0 | 1 2 0
. xno . . |   n |  0   n   0 |  *  * 2n   *  * | 1  0 0  2  0 | 2 0 1
. x . x . |   4 |  0   2   2 |  *  *  * 2nn  * | 0  1 0  1  1 | 1 1 1
. . . xno |   n |  0   0   n |  *  *  *   * 2n | 0  0 1  0  2 | 0 2 1
----------+-----+------------+-----------------+--------------+------
x xno . . ♦  2n |  n  2n   0 |  n  0  2   0  0 | n  * *  *  * | 2 0 0
x x . x . ♦   8 |  4   4   4 |  2  2  0   2  0 | * nn *  *  * | 1 1 0
x . . xno ♦  2n |  n   0  2n |  0  n  0   0  2 | *  * n  *  * | 0 2 0
. xno x . ♦  2n |  0  2n   n |  0  0  2   n  0 | *  * * 2n  * | 1 0 1
. x . xno ♦  2n |  0   n  2n |  0  0  0   n  2 | *  * *  * 2n | 0 1 1
----------+-----+------------+-----------------+--------------+------
x xno x . ♦  4n | 2n  4n  2n | 2n  n  4  2n  0 | 2  n 0  2  0 | n * *
x x . xno ♦  4n | 2n  2n  4n |  n 2n  0  2n  4 | 0  n 2  0  2 | * n *
. xno xno ♦  nn |  0  nn  nn |  0  0  n  nn  n | 0  0 0  n  n | * * 2
```
```or
. . . . .    | 2nn |  1   4 |   4  2   4 |  2  4  4 |  4 1
-------------+-----+--------+------------+----------+-----
x . . . .    |   2 | nn   * |   4  0   0 |  2  4  0 |  4 0
. x . . .  & |   2 |  * 4nn |   1  1   2 |  1  2  3 |  3 1
-------------+-----+--------+------------+----------+-----
x x . . .  & |   4 |  2   2 | 2nn  *   * |  1  2  0 |  3 0
. xno . .  & |   n |  0   n |   * 4n   * |  1  0  2 |  2 1
. x . x .    |   4 |  0   4 |   *  * 2nn |  0  1  2 |  2 1
-------------+-----+--------+------------+----------+-----
x xno . .  & ♦  2n |  n  2n |   n  2   0 | 2n  *  * |  2 0
x x . x .    ♦   8 |  4   8 |   4  0   2 |  * nn  * |  2 0
. xno x .  & ♦  2n |  0  3n |   0  2   n |  *  * 4n |  1 1
-------------+-----+--------+------------+----------+-----
x xno x .  & ♦  4n | 2n  6n |  3n  4  2n |  2  n  2 | 2n *
. xno xno    ♦  nn |  0 2nn |   0 2n  nn |  0  0 2n |  * 2
```

```xxnoo xxnoo&#x   (n>2)   → height = 1
({n}{n}-dip || {n}{n}-dip)

o.no. o.no.    | nn  * |  2  2  1  0  0 | 1  4 1  2  2 0  0 0 | 2 2 1  4 1 0 0 | 1 2 2 0
.on.o .on.o    |  * nn |  0  0  1  2  2 | 0  0 0  2  2 1  4 1 | 0 0 1  4 1 2 2 | 0 2 2 1
---------------+-------+----------------+---------------------+----------------+--------
x. .. .. ..    |  2  0 | nn  *  *  *  * | 1  2 0  1  0 0  0 0 | 2 1 1  2 0 0 0 | 1 2 1 0
.. .. x. ..    |  2  0 |  * nn  *  *  * | 0  2 1  0  1 0  0 0 | 1 2 0  2 1 0 0 | 1 1 2 0
oonoo oonoo&#x |  1  1 |  *  * nn  *  * | 0  0 0  2  2 0  0 0 | 0 0 1  4 1 0 0 | 0 2 2 0
.x .. .. ..    |  0  2 |  *  *  * nn  * | 0  0 0  1  0 1  2 0 | 0 0 1  2 0 2 1 | 0 2 1 1
.. .. .x ..    |  0  2 |  *  *  *  * nn | 0  0 0  0  1 0  2 1 | 0 0 0  2 1 1 2 | 0 1 2 1
---------------+-------+----------------+---------------------+----------------+--------
x.no. .. ..    |  n  0 |  n  0  0  0  0 | n  * *  *  * *  * * | 2 0 1  0 0 0 0 | 1 2 0 0
x. .. x. ..    |  4  0 |  2  2  0  0  0 | * nn *  *  * *  * * | 1 1 0  1 0 0 0 | 1 1 1 0
.. .. x.no.    |  n  0 |  0  n  0  0  0 | *  * n  *  * *  * * | 0 2 0  0 1 0 0 | 1 0 2 0
xx .. .. ..&#x |  2  2 |  1  0  2  1  0 | *  * * nn  * *  * * | 0 0 1  2 0 0 0 | 0 2 1 0
.. .. xx ..&#x |  2  2 |  0  1  2  0  1 | *  * *  * nn *  * * | 0 0 0  2 1 0 0 | 0 1 2 0
.xn.o .. ..    |  0  n |  0  0  0  n  0 | *  * *  *  * n  * * | 0 0 1  0 0 2 0 | 0 2 0 1
.x .. .x ..    |  0  4 |  0  0  0  2  2 | *  * *  *  * * nn * | 0 0 0  1 0 1 1 | 0 1 1 1
.. .. .xn.o    |  0  n |  0  0  0  0  n | *  * *  *  * *  * n | 0 0 0  0 1 0 2 | 0 0 2 1
---------------+-------+----------------+---------------------+----------------+--------
x.no. x. ..    ♦ 2n  0 | 2n  n  0  0  0 | 2  n 0  0  0 0  0 0 | n * *  * * * * | 1 1 0 0
x. .. x.no.    ♦ 2n  0 |  n 2n  0  0  0 | 0  n 2  0  0 0  0 0 | * n *  * * * * | 1 0 1 0
xxnoo .. ..&#x ♦  n  n |  n  0  n  n  0 | 1  0 0  n  0 1  0 0 | * * n  * * * * | 0 2 0 0
xx .. xx ..&#x ♦  4  4 |  2  2  4  2  2 | 0  1 0  2  2 0  1 0 | * * * nn * * * | 0 1 1 0
.. .. xxnoo&#x ♦  n  n |  0  n  n  0  n | 0  0 1  0  n 0  0 1 | * * *  * n * * | 0 0 2 0
.xn.o .x ..    ♦  0 2n |  0  0  0 2n  n | 0  0 0  0  0 2  n 0 | * * *  * * n * | 0 1 0 1
.x .. .xn.o    ♦  0 2n |  0  0  0  n 2n | 0  0 0  0  0 0  n 2 | * * *  * * * n | 0 0 1 1
---------------+-------+----------------+---------------------+----------------+--------
x.no. x.no.    ♦ nn  0 | nn nn  0  0  0 | n nn n  0  0 0  0 0 | n n 0  0 0 0 0 | 1 * * *
xxnoo xx ..&#x ♦ 2n 2n | 2n  n 2n 2n  n | 2  n 0 2n  n 2  n 0 | 1 0 2  n 0 1 0 | * n * *
xx .. xxnoo&#x ♦ 2n 2n |  n 2n 2n  n 2n | 0  n 2  n 2n 0  n 2 | 0 1 0  n 2 0 1 | * * n *
.xn.o .xn.o    ♦  0 nn |  0  0  0 nn nn | 0  0 0  0  0 n nn n | 0 0 0  0 0 n n | * * * 1
```