Acronym | n,n,n-tip |
Name | n-gon - n-gon - n-gon - triprism |
Circumradius | sqrt[3/(4 sin2(π/n))] |
Face vector | n3, 3n3, 3n3+3n2, n3+6n2, 3n2+3n, 3n |
Especially | trittip (n=3) ax (n=4) pettip (n=5) hittip (n=6) hettip (n=7) otip (n=8) etip (n=9) dittip (n=10) |
Confer |
|
Incidence matrix according to Dynkin symbol
xno xno xno (n>2) . . . . . . | nnn | 2 2 2 | 1 4 4 1 4 1 | 2 2 2 8 2 2 2 | 1 4 1 4 4 1 | 2 2 2 ------------+-----+-------------+----------------------+-----------------------+----------------+------ x . . . . . | 2 | nnn * * | 1 2 2 0 0 0 | 2 2 1 4 1 0 0 | 1 4 1 2 2 0 | 2 2 1 . . x . . . | 2 | * nnn * | 0 2 0 1 2 0 | 1 0 2 4 0 2 1 | 1 2 0 4 2 1 | 2 1 2 . . . . x . | 2 | * * nnn | 0 0 2 0 2 1 | 0 1 0 4 2 1 2 | 0 2 1 2 4 1 | 1 2 2 ------------+-----+-------------+----------------------+-----------------------+----------------+------ xno . . . . | n | n 0 0 | nn * * * * * | 2 2 0 0 0 0 0 | 1 4 1 0 0 0 | 2 2 0 x . x . . . | 4 | 2 2 0 | * nnn * * * * | 1 0 1 2 0 0 0 | 1 2 0 2 1 0 | 2 1 1 x . . . x . | 4 | 2 0 2 | * * nnn * * * | 0 1 0 2 1 0 0 | 0 2 1 1 2 0 | 1 2 1 . . xno . . | n | 0 n 0 | * * * nn * * | 0 0 2 0 0 2 0 | 1 0 0 4 0 1 | 2 0 2 . . x . x . | 4 | 0 2 2 | * * * * nnn * | 0 0 0 2 0 1 1 | 0 1 0 2 2 1 | 1 1 2 . . . . xno | n | 0 0 n | * * * * * nn | 0 0 0 0 2 0 2 | 0 0 1 0 4 1 | 0 2 2 ------------+-----+-------------+----------------------+-----------------------+----------------+------ xno x . . . ♦ 2n | 2n n 0 | 2 n 0 0 0 0 | nn * * * * * * | 1 2 0 0 0 0 | 2 1 0 xno . . x . ♦ 2n | 2n 0 n | 2 0 n 0 0 0 | * nn * * * * * | 0 2 1 0 0 0 | 1 2 0 x . xno . . ♦ 2n | n 2n 0 | 0 n 0 2 0 0 | * * nn * * * * | 1 0 0 2 0 0 | 2 0 1 x . x . x . ♦ 8 | 4 4 4 | 0 2 2 0 2 0 | * * * nnn * * * | 0 1 0 1 1 0 | 1 1 1 x . . . xno ♦ 2n | n 0 2n | 0 0 n 0 0 2 | * * * * nn * * | 0 0 1 0 2 0 | 0 2 1 . . xno x . ♦ 2n | 0 2n n | 0 0 0 2 n 0 | * * * * * nn * | 0 0 0 2 0 1 | 1 0 2 . . x . xno ♦ 2n | 0 n 2n | 0 0 0 0 n 2 | * * * * * * nn | 0 0 0 0 2 1 | 0 1 2 ------------+-----+-------------+----------------------+-----------------------+----------------+------ xno xno . . ♦ nn | nn nn 0 | n nn 0 n 0 0 | n 0 n 0 0 0 0 | n * * * * * | 2 0 0 xno x . x . ♦ 4n | 4n 2n 2n | 4 2n 2n 0 n 0 | 2 2 0 n 0 0 0 | * nn * * * * | 1 1 0 xno . . xno ♦ nn | nn 0 nn | n 0 nn 0 0 n | 0 n 0 0 n 0 0 | * * n * * * | 0 2 0 x . xno x . ♦ 4n | 2n 4n 2n | 0 2n n 4 2n 0 | 0 0 2 n 0 2 0 | * * * nn * * | 1 0 1 x . x . xno ♦ 4n | 2n 2n 4n | 0 n 2n 0 2n 4 | 0 0 0 n 2 0 2 | * * * * nn * | 0 1 1 . . xno xno ♦ nn | 0 nn nn | 0 0 0 n nn n | 0 0 0 0 0 n n | * * * * * n | 0 0 2 ------------+-----+-------------+----------------------+-----------------------+----------------+------ xno xno x . ♦ 2nn | 2nn 2nn nn | 2n 2nn nn 2n nn 0 | 2n n 2n nn 0 n 0 | 2 n 0 n 0 0 | n * * xno x . xno ♦ 2nn | 2nn nn 2nn | 2n nn 2nn 0 nn 2n | n 2n 0 nn 2n 0 n | 0 n 2 0 n 0 | * n * x . xno xno ♦ 2nn | nn 2nn 2nn | 0 nn nn 2n 2nn 2n | 0 0 n nn n 2n 2n | 0 0 0 n n 2 | * * n
or . . . . . . | nnn | 3 | 3 12 | 12 8 | 3 12 | 6 ---------------+-----+------+---------+---------+--------+--- x . . . . . & | 2 | 3nnn | 1 4 | 6 4 | 2 8 | 5 ---------------+-----+------+---------+---------+--------+--- xno . . . . & | n | n | 3nn * | 4 0 | 2 4 | 4 x . x . . . & | 4 | 4 | * 3nn | 2 2 | 1 5 | 4 ---------------+-----+------+---------+---------+--------+--- xno x . . . & ♦ 2n | 3n | 2 n | 6nn * | 1 2 | 3 x . x . x . ♦ 8 | 12 | 0 6 | * nnn | 0 3 | 3 ---------------+-----+------+---------+---------+--------+--- xno xno . . & ♦ nn | 2nn | 2n nn | 2n 0 | 3n * | 2 xno x . x . & ♦ 4n | 8n | 4 5n | 4 n | * 3nn | 2 ---------------+-----+------+---------+---------+--------+--- xno xno x . & ♦ 2nn | 5nn | 4n 4nn | 6n nn | 2 2n | 3n
© 2004-2025 | top of page |