Incidence matrix according to Dynkin symbol
x xno xmo (n>2, m>2)
. . . . . | 2nm | 1 2 2 | 2 2 1 4 1 | 1 4 1 2 2 | 2 2 1
----------+-----+------------+-----------------+--------------+------
x . . . . | 2 | nm * * | 2 2 0 0 0 | 1 4 1 0 0 | 2 2 0
. x . . . | 2 | * 2nm * | 1 0 1 2 0 | 1 2 0 2 1 | 2 1 1
. . . x . | 2 | * * 2nm | 0 1 0 2 1 | 0 2 1 1 2 | 1 2 1
----------+-----+------------+-----------------+--------------+------
x x . . . | 4 | 2 2 0 | nm * * * * | 1 2 0 0 0 | 2 1 0
x . . x . | 4 | 2 0 2 | * nm * * * | 0 2 1 0 0 | 1 2 0
. xno . . | n | 0 n 0 | * * 2m * * | 1 0 0 2 0 | 2 0 1
. x . x . | 4 | 0 2 2 | * * * 2nm * | 0 1 0 1 1 | 1 1 1
. . . xmo | m | 0 0 m | * * * * 2n | 0 0 1 0 2 | 0 2 1
----------+-----+------------+-----------------+--------------+------
x xno . . ♦ 2n | n 2n 0 | n 0 2 0 0 | m * * * * | 2 0 0
x x . x . ♦ 8 | 4 4 4 | 2 2 0 2 0 | * nm * * * | 1 1 0
x . . xmo ♦ 2m | m 0 2m | 0 m 0 0 2 | * * n * * | 0 2 0
. xno x . ♦ 2n | 0 2n n | 0 0 2 n 0 | * * * 2m * | 1 0 1
. x . xmo ♦ 2m | 0 m 2m | 0 0 0 m 2 | * * * * 2n | 0 1 1
----------+-----+------------+-----------------+--------------+------
x xno x . ♦ 4n | 2n 4n 2n | 2n n 4 2n 0 | 2 n 0 2 0 | m * *
x x . xmo ♦ 4m | 2m 2m 4m | m 2m 0 2m 4 | 0 m 2 0 2 | * n *
. xno xmo ♦ nm | 0 nm nm | 0 0 m nm n | 0 0 0 m n | * * 2
xxnoo xxmoo&#x (n>2, m>2) → height = 1
({n}{m}-dip || {n}{m}-dip)
o.no. o.mo. | nm * | 2 2 1 0 0 | 1 4 1 2 2 0 0 0 | 2 2 1 4 1 0 0 | 1 2 2 0
.on.o .om.o | * nm | 0 0 1 2 2 | 0 0 0 2 2 1 4 1 | 0 0 1 4 1 2 2 | 0 2 2 1
---------------+-------+----------------+---------------------+----------------+--------
x. .. .. .. | 2 0 | nm * * * * | 1 2 0 1 0 0 0 0 | 2 1 1 2 0 0 0 | 1 2 1 0
.. .. x. .. | 2 0 | * nm * * * | 0 2 1 0 1 0 0 0 | 1 2 0 2 1 0 0 | 1 1 2 0
oonoo oomoo&#x | 1 1 | * * nm * * | 0 0 0 2 2 0 0 0 | 0 0 1 4 1 0 0 | 0 2 2 0
.x .. .. .. | 0 2 | * * * nm * | 0 0 0 1 0 1 2 0 | 0 0 1 2 0 2 1 | 0 2 1 1
.. .. .x .. | 0 2 | * * * * nm | 0 0 0 0 1 0 2 1 | 0 0 0 2 1 1 2 | 0 1 2 1
---------------+-------+----------------+---------------------+----------------+--------
x.no. .. .. | n 0 | n 0 0 0 0 | m * * * * * * * | 2 0 1 0 0 0 0 | 1 2 0 0
x. .. x. .. | 4 0 | 2 2 0 0 0 | * nm * * * * * * | 1 1 0 1 0 0 0 | 1 1 1 0
.. .. x.mo. | m 0 | 0 m 0 0 0 | * * n * * * * * | 0 2 0 0 1 0 0 | 1 0 2 0
xx .. .. ..&#x | 2 2 | 1 0 2 1 0 | * * * nm * * * * | 0 0 1 2 0 0 0 | 0 2 1 0
.. .. xx ..&#x | 2 2 | 0 1 2 0 1 | * * * * nm * * * | 0 0 0 2 1 0 0 | 0 1 2 0
.xn.o .. .. | 0 n | 0 0 0 n 0 | * * * * * m * * | 0 0 1 0 0 2 0 | 0 2 0 1
.x .. .x .. | 0 4 | 0 0 0 2 2 | * * * * * * nm * | 0 0 0 1 0 1 1 | 0 1 1 1
.. .. .xm.o | 0 m | 0 0 0 0 m | * * * * * * * n | 0 0 0 0 1 0 2 | 0 0 2 1
---------------+-------+----------------+---------------------+----------------+--------
x.no. x. .. ♦ 2n 0 | 2n n 0 0 0 | 2 n 0 0 0 0 0 0 | m * * * * * * | 1 1 0 0
x. .. x.mo. ♦ 2m 0 | m 2m 0 0 0 | 0 m 2 0 0 0 0 0 | * n * * * * * | 1 0 1 0
xxnoo .. ..&#x ♦ n n | n 0 n n 0 | 1 0 0 n 0 1 0 0 | * * m * * * * | 0 2 0 0
xx .. xx ..&#x ♦ 4 4 | 2 2 4 2 2 | 0 1 0 2 2 0 1 0 | * * * nm * * * | 0 1 1 0
.. .. xxmoo&#x ♦ m m | 0 m m 0 m | 0 0 1 0 m 0 0 1 | * * * * n * * | 0 0 2 0
.xn.o .x .. ♦ 0 2n | 0 0 0 2n n | 0 0 0 0 0 2 n 0 | * * * * * m * | 0 1 0 1
.x .. .xm.o ♦ 0 2m | 0 0 0 m 2m | 0 0 0 0 0 0 m 2 | * * * * * * n | 0 0 1 1
---------------+-------+----------------+---------------------+----------------+--------
x.no. x.mo. ♦ nm 0 | nm nm 0 0 0 | m nm n 0 0 0 0 0 | m n 0 0 0 0 0 | 1 * * *
xxnoo xx ..&#x ♦ 2n 2n | 2n n 2n 2n n | 2 n 0 2n n 2 n 0 | 1 0 2 n 0 1 0 | * m * *
xx .. xxmoo&#x ♦ 2m 2m | m 2m 2m m 2m | 0 m 2 m 2m 0 m 2 | 0 1 0 m 2 0 1 | * * n *
.xn.o .xm.o ♦ 0 nm | 0 0 0 nm nm | 0 0 0 0 0 m nm n | 0 0 0 0 0 m n | * * * 1