Acronym hexarat
Name hex atop rat,
hex-first half of tedrag
Circumradius 1
Lace city
in approx. ASCII-art
         x3o3o4o         
                         
                         
                         
                         
                         
x3o3o4o  o3x3o4o  x3o3o4o
Face vector 48, 328, 696, 656, 283, 43
Confer
uniform relative:
rag  
related CRF:
tedrag  
general polytopal classes:
segmentopeta  

Incidence matrix according to Dynkin symbol

o(qo) x(xo)3o(ox)3o(oo)4o(oo)&#x   → height = 1/sqrt(2) = 0.707107
(hex || rat)

o(..) o(..)3o(..)3o(..)4o(..)     | 8  *  * |  6  2  6  0  0  0 | 12 12  6 12 12  0  0   0  0  0 |  8 24 12  8 12  24  0  0   0  0 | 1 16  8 24  16 0  0 0 | 2 16 1 0
.(o.) .(o.)3.(o.)3.(o.)4.(o.)     | * 16  * |  0  1  0  6  6  0 |  0  6  0  0  6 12  6  12  0  0 |  0 12  0  0  6  12  8 12   8  0 | 0  8  0 12   8 1  8 1 | 1  8 1 1
.(.o) .(.o)3.(.o)3.(.o)4.(.o)     | *  * 24 |  0  0  2  0  4  8 |  0  0  1  8  4  0  2  16  4  8 |  0  0  4  8  2  16  0  8  16  4 | 0  0  4  8  16 0  8 2 | 0  8 2 1
----------------------------------+---------+-------------------+--------------------------------+---------------------------------+-----------------------+---------
.(..) x(..) .(..) .(..) .(..)     | 2  0  0 | 24  *  *  *  *  * |  4  2  1  0  0  0  0   0  0  0 |  4  8  4  0  2   0  0  0   0  0 | 1  8  4  8   0 0  0 0 | 2  8 0 0
o(o.) o(o.)3o(o.)3o(o.)4o(o.)&#x  | 1  1  0 |  * 16  *  *  *  * |  0  6  0  0  6  0  0   0  0  0 |  0 12  0  0  6  12  0  0   0  0 | 0  8  0 12   8 0  0 0 | 1  8 1 0
o(.o) o(.o)3o(.o)3o(.o)4o(.o)&#x  | 1  0  1 |  *  * 48  *  *  * |  0  0  1  4  2  0  0   0  0  0 |  0  0  4  4  2   8  0  0   0  0 | 0  0  4  8   8 0  0 0 | 0  8 1 0
.(..) .(x.) .(..) .(..) .(..)     | 0  2  0 |  *  *  * 48  *  * |  0  1  0  0  0  4  1   0  0  0 |  0  4  0  0  1   0  4  4   0  0 | 0  4  0  4   0 1  4 0 | 1  4 0 1
.(oo) .(oo)3.(oo)3.(oo)4.(oo)&#x  | 0  1  1 |  *  *  *  * 96  * |  0  0  0  0  1  0  1   4  0  0 |  0  0  0  0  1   4  0  4   4  0 | 0  0  0  4   4 0  4 1 | 0  4 1 1
.(..) .(..) .(.x) .(..) .(..)     | 0  0  2 |  *  *  *  *  * 96 |  0  0  0  1  0  0  0   2  1  2 |  0  0  1  2  0   2  0  2   4  2 | 0  0  2  2   4 0  4 1 | 0  4 1 1
----------------------------------+---------+-------------------+--------------------------------+---------------------------------+-----------------------+---------
.(..) x(..)3o(..) .(..) .(..)     | 3  0  0 |  3  0  0  0  0  0 | 32  *  *  *  *  *  *   *  *  * |  2  2  1  0  0   0  0  0   0  0 | 1  4  2  2   0 0  0 0 | 2  4 0 0
.(..) x(x.) .(..) .(..) .(..)&#x  | 2  2  0 |  1  2  0  1  0  0 |  * 48  *  *  *  *  *   *  *  * |  0  4  0  0  1   0  0  0   0  0 | 0  4  0  4   0 0  0 0 | 1  4 0 0
.(..) x(.o) .(..) .(..) .(..)&#x  | 2  0  1 |  1  0  2  0  0  0 |  *  * 24  *  *  *  *   *  *  * |  0  0  4  0  2   0  0  0   0  0 | 0  0  4  8   0 0  0 0 | 0  8 0 0
.(..) .(..) o(.x) .(..) .(..)&#x  | 1  0  2 |  0  0  2  0  0  1 |  *  *  * 96  *  *  *   *  *  * |  0  0  1  2  0   2  0  0   0  0 | 0  0  2  2   4 0  0 0 | 0  4 1 0
o(oo) o(oo)3o(oo)3o(oo)4o(oo)&#x  | 1  1  1 |  0  1  1  0  1  0 |  *  *  *  * 96  *  *   *  *  * |  0  0  0  0  1   4  0  0   0  0 | 0  0  0  4   4 0  0 0 | 0  4 1 0
.(..) .(x.)3.(o.) .(..) .(..)     | 0  3  0 |  0  0  0  3  0  0 |  *  *  *  *  * 64  *   *  *  * |  0  1  0  0  0   0  2  1   0  0 | 0  2  0  1   0 1  2 0 | 1  2 0 1
.(..) .(xo) .(..) .(..) .(..)&#x  | 0  2  1 |  0  0  0  1  2  0 |  *  *  *  *  *  * 48   *  *  * |  0  0  0  0  1   0  0  4   0  0 | 0  0  0  4   0 0  4 0 | 0  4 0 1
.(..) .(..) .(ox) .(..) .(..)&#x  | 0  1  2 |  0  0  0  0  2  1 |  *  *  *  *  *  *  * 192  *  * |  0  0  0  0  0   1  0  1   2  0 | 0  0  0  1   2 0  2 1 | 0  2 1 1
.(..) .(.o)3.(.x) .(..) .(..)     | 0  0  3 |  0  0  0  0  0  3 |  *  *  *  *  *  *  *   * 32  * |  0  0  1  0  0   0  0  2   0  2 | 0  0  2  2   0 0  4 0 | 0  4 0 1
.(..) .(..) .(.x)3.(.o) .(..)     | 0  0  3 |  0  0  0  0  0  3 |  *  *  *  *  *  *  *   *  * 64 |  0  0  0  1  0   0  0  0   2  1 | 0  0  1  0   2 0  2 1 | 0  2 1 1
----------------------------------+---------+-------------------+--------------------------------+---------------------------------+-----------------------+---------
.(..) x(..)3o(..)3o(..) .(..)      4  0  0 |  6  0  0  0  0  0 |  4  0  0  0  0  0  0   0  0  0 | 16  *  *  *  *   *  *  *   *  * | 1  2  1  0   0 0  0 0 | 2  2 0 0
.(..) x(x.)3o(o.) .(..) .(..)&#x   3  3  0 |  3  3  0  3  0  0 |  1  3  0  0  0  1  0   0  0  0 |  * 64  *  *  *   *  *  *   *  * | 0  2  0  1   0 0  0 0 | 1  2 0 0
.(..) x(.o)3o(.x) .(..) .(..)&#x   3  0  3 |  3  0  6  0  0  3 |  1  0  3  3  0  0  0   0  1  0 |  *  * 32  *  *   *  *  *   *  * | 0  0  2  2   0 0  0 0 | 0  4 0 0
.(..) .(..) o(.x)3o(.o) .(..)&#x   1  0  3 |  0  0  3  0  0  3 |  0  0  0  3  0  0  0   0  0  1 |  *  *  * 64  *   *  *  *   *  * | 0  0  1  0   2 0  0 0 | 0  2 1 0
.(..) x(xo) .(..) .(..) .(..)&#x   2  2  1 |  1  2  2  1  2  0 |  0  1  1  0  2  0  1   0  0  0 |  *  *  *  * 48   *  *  *   *  * | 0  0  0  4   0 0  0 0 | 0  4 0 0
.(..) .(..) o(ox) .(..) .(..)&#x   1  1  2 |  0  1  2  0  2  1 |  0  0  0  1  2  0  0   1  0  0 |  *  *  *  *  * 192  *  *   *  * | 0  0  0  1   2 0  0 0 | 0  2 1 0
.(..) .(x.)3.(o.)3.(o.) .(..)      0  4  0 |  0  0  0  6  0  0 |  0  0  0  0  0  4  0   0  0  0 |  *  *  *  *  *   * 32  *   *  * | 0  1  0  0   0 1  1 0 | 1  1 0 1
.(..) .(xo)3.(ox) .(..) .(..)&#x   0  3  3 |  0  0  0  3  6  3 |  0  0  0  0  0  1  3   3  1  0 |  *  *  *  *  *   *  * 64   *  * | 0  0  0  1   0 0  2 0 | 0  2 0 1
.(..) .(..) .(ox)3.(oo) .(..)&#x   0  1  3 |  0  0  0  0  3  3 |  0  0  0  0  0  0  0   3  0  1 |  *  *  *  *  *   *  *  * 128  * | 0  0  0  0   1 0  1 1 | 0  1 1 1
.(..) .(.o)3.(.x)3.(.o) .(..)      0  0  6 |  0  0  0  0  0 12 |  0  0  0  0  0  0  0   0  4  4 |  *  *  *  *  *   *  *  *   * 16 | 0  0  1  0   0 0  2 0 | 0  2 0 1
----------------------------------+---------+-------------------+--------------------------------+---------------------------------+-----------------------+---------
.(..) x(..)3o(..)3o(..)4o(..)      8  0  0 | 24  0  0  0  0  0 | 32  0  0  0  0  0  0   0  0  0 | 16  0  0  0  0   0  0  0   0  0 | 1  *  *  *   * *  * * | 2  0 0 0
.(..) x(x.)3o(o.)3o(o.) .(..)&#x   4  4  0 |  6  4  0  6  0  0 |  4  6  0  0  0  4  0   0  0  0 |  1  4  0  0  0   0  1  0   0  0 | * 32  *  *   * *  * * | 1  1 0 0
.(..) x(.o)3o(.x)3o(.o) .(..)&#x   4  0  6 |  6  0 12  0  0 12 |  4  0  6 12  0  0  0   0  4  4 |  1  0  4  4  0   0  0  0   0  1 | *  * 16  *   * *  * * | 0  2 0 0
.(..) x(xo)3o(ox) .(..) .(..)&#x   3  3  3 |  3  3  6  3  6  3 |  1  3  3  3  6  1  3   3  1  0 |  0  1  1  0  3   3  0  1   0  0 | *  *  * 64   * *  * * | 0  2 0 0
.(..) .(..) o(ox)3o(oo) .(..)&#x   1  1  3 |  0  1  3  0  3  3 |  0  0  0  3  3  0  0   3  0  1 |  0  0  0  1  0   3  0  0   1  0 | *  *  *  * 128 *  * * | 0  1 1 0
.(..) .(x.)3.(o.)3.(o.)4.(o.)      0  8  0 |  0  0  0 24  0  0 |  0  0  0  0  0 32  0   0  0  0 |  0  0  0  0  0   0 16  0   0  0 | *  *  *  *   * 2  * * | 1  0 0 1
.(..) .(xo)3.(ox)3.(oo) .(..)&#x   0  4  6 |  0  0  0  6 12 12 |  0  0  0  0  0  4  6  12  4  4 |  0  0  0  0  0   0  1  4   4  1 | *  *  *  *   * * 32 * | 0  1 0 1
.(qo) .(..) .(ox)3.(oo)4.(oo)&#zx  0  2  6 |  0  0  0  0 12 12 |  0  0  0  0  0  0  0  24  0  8 |  0  0  0  0  0   0  0  0  16  0 | *  *  *  *   * *  * 8 | 0  0 1 1
----------------------------------+---------+-------------------+--------------------------------+---------------------------------+-----------------------+---------
.(..) x(x.)3o(o.)3o(o.)4o(o.)&#x   8  8  0 | 24  8  0 24  0  0 | 32 24  0  0  0 32  0   0  0  0 | 16 32  0  0  0   0 16  0   0  0 | 1 16  0  0   0 1  0 0 | 2  * * *
.(..) x(xo)3o(ox)3o(oo) .(..)&#x   4  4  6 |  6  4 12  6 12 12 |  4  6  6 12 12  4  6  12  4  4 |  1  4  4  4  6  12  1  4   4  1 | 0  1  1  4   4 0  1 0 | * 32 * *
o(qo) .(..) o(ox)3o(oo)4o(oo)&#x   1  2  6 |  0  2  6  0 12 12 |  0  0  0 12 12  0  0  24  0  8 |  0  0  0  8  0  24  0  0  16  0 | 0  0  0  0  16 0  0 1 | *  * 8 *
.(qo) .(xo)3.(ox)3.(oo)4.(oo)&#zx  0 16 24 |  0  0  0 48 96 96 |  0  0  0  0  0 64 48 192 32 64 |  0  0  0  0  0   0 32 64 128 16 | 0  0  0  0   0 2 32 8 | *  * * 1

© 2004-2025
top of page