Acronym | dope, K-4.74 |
Name | dodecahedron prism |
Segmentochoron display | |
Cross sections |
© |
Circumradius | sqrt[(11+3 sqrt(5))/8] = 1.487792 |
Coordinates |
|
General of army | (is itself convex) |
Colonel of regiment | (is itself locally convex – no other uniform polychoral members) |
Dual | ite |
Dihedral angles | |
Face vector | 40, 80, 54, 14 |
Confer |
|
External links |
As abstract polytope dope is isomorphic to gissiddip, thereby replacing pentagons by pentagrams resp. replacing doe by gissid and pip by stip.
Note that dope can be thought of as the external blend of 20 pens + 30 squascs + 12 pippies + 2 ikadoes. This decomposition is described as the degenerate segmentoteron ox xo3oo5ox&#x.
Incidence matrix according to Dynkin symbol
x o3o5x . . . . | 40 | 1 3 | 3 3 | 3 1 --------+----+-------+-------+----- x . . . | 2 | 20 * | 3 0 | 3 0 . . . x | 2 | * 60 | 1 2 | 2 1 --------+----+-------+-------+----- x . . x | 4 | 2 2 | 30 * | 2 0 . . o5x | 5 | 0 5 | * 24 | 1 1 --------+----+-------+-------+----- x . o5x ♦ 10 | 5 10 | 5 2 | 12 * . o3o5x ♦ 20 | 0 30 | 0 12 | * 2 snubbed forms: β2o3o5β
x o3o5/4x . . . . | 40 | 1 3 | 3 3 | 3 1 ----------+----+-------+-------+----- x . . . | 2 | 20 * | 3 0 | 3 0 . . . x | 2 | * 60 | 1 2 | 2 1 ----------+----+-------+-------+----- x . . x | 4 | 2 2 | 30 * | 2 0 . . o5/4x | 5 | 0 5 | * 24 | 1 1 ----------+----+-------+-------+----- x . o5/4x ♦ 10 | 5 10 | 5 2 | 12 * . o3o5/4x ♦ 20 | 0 30 | 0 12 | * 2
x o3/2o5x . . . . | 40 | 1 3 | 3 3 | 3 1 ----------+----+-------+-------+----- x . . . | 2 | 20 * | 3 0 | 3 0 . . . x | 2 | * 60 | 1 2 | 2 1 ----------+----+-------+-------+----- x . . x | 4 | 2 2 | 30 * | 2 0 . . o5x | 5 | 0 5 | * 24 | 1 1 ----------+----+-------+-------+----- x . o5x ♦ 10 | 5 10 | 5 2 | 12 * . o3/2o5x ♦ 20 | 0 30 | 0 12 | * 2
x o3/2o5/4x . . . . | 40 | 1 3 | 3 3 | 3 1 ------------+----+-------+-------+----- x . . . | 2 | 20 * | 3 0 | 3 0 . . . x | 2 | * 60 | 1 2 | 2 1 ------------+----+-------+-------+----- x . . x | 4 | 2 2 | 30 * | 2 0 . . o5/4x | 5 | 0 5 | * 24 | 1 1 ------------+----+-------+-------+----- x . o5/4x ♦ 10 | 5 10 | 5 2 | 12 * . o3/2o5/4x ♦ 20 | 0 30 | 0 12 | * 2
oo3oo5xx&#x → height = 1
(doe || doe)
o.3o.5o. | 20 * | 3 1 0 | 3 3 0 | 1 3 0
.o3.o5.o | * 20 | 0 1 3 | 0 3 3 | 0 3 1
------------+-------+----------+----------+-------
.. .. x. | 2 0 | 30 * * | 2 1 0 | 1 2 0
oo3oo5oo&#x | 1 1 | * 20 * | 0 3 0 | 0 3 0
.. .. .x | 0 2 | * * 30 | 0 1 2 | 0 2 1
------------+-------+----------+----------+-------
.. o.5x. | 5 0 | 5 0 0 | 12 * * | 1 1 0
.. .. xx&#x | 2 2 | 1 2 1 | * 30 * | 0 2 0
.. .o5.x | 0 5 | 0 0 5 | * * 12 | 0 1 1
------------+-------+----------+----------+-------
o.3o.5x. ♦ 20 0 | 30 0 0 | 12 0 0 | 1 * *
.. oo5xx&#x ♦ 5 5 | 5 5 5 | 1 5 1 | * 12 *
.o3.o5.x ♦ 0 20 | 0 0 30 | 0 0 12 | * * 1
© 2004-2024 | top of page |