Acronym ..., ike || dope Name (degenerate) ike atop dope Circumradius ∞   i.e. flat in euclidean space Confer general polytopal classes: decomposition

It either can be thought of as a degenerate 5D segmentotope with zero height, or as a 4D euclidean decomposition of the larger base into smaller bits.

Incidence matrix according to Dynkin symbol

```ox xo3oo5ox&#x   → height = 0
(ike || dope)

o. o.3o.5o.    | 12  * |  5  10  0  0 |  5  5  20  10  0  0 | 1 10  5 10 10  2  0 0 |  5  5  1 2 0
.o .o3.o5.o    |  * 40 |  0   3  1  3 |  0  3   3   6  3  3 | 0  3  6  1  3  3  3 1 |  1  3  3 1 1
---------------+-------+--------------+---------------------+-----------------------+-------------
.. x. .. ..    |  2  0 | 30   *  *  * |  2  0   4   0  0  0 | 1  2  0  4  2  0  0 0 |  2  1  0 2 0
oo oo3oo5oo&#x |  1  1 |  * 120  *  * |  0  1   2   2  0  0 | 0  2  2  1  2  1  0 0 |  1  2  1 1 0
.x .. .. ..    |  0  2 |  *   * 20  * |  0  3   0   0  3  0 | 0  3  6  0  0  0  3 0 |  1  3  3 0 1
.. .. .. .x    |  0  2 |  *   *  * 60 |  0  0   0   2  1  2 | 0  0  2  0  1  2  2 1 |  0  1  2 1 1
---------------+-------+--------------+---------------------+-----------------------+-------------
.. x.3o. ..    |  3  0 |  3   0  0  0 | 20  *   *   *  *  * | 1  0  0  2  0  0  0 0 |  1  0  0 2 0
ox .. .. ..&#x |  1  2 |  0   2  1  0 |  * 60   *   *  *  * | 0  2  2  0  0  0  0 0 |  1  2  1 0 0
.. xo .. ..&#x |  2  1 |  1   2  0  0 |  *  * 120   *  *  * | 0  1  0  1  1  0  0 0 |  1  1  0 1 0
.. .. .. ox&#x |  1  2 |  0   2  0  1 |  *  *   * 120  *  * | 0  0  1  0  1  1  0 0 |  0  1  1 1 0
.x .. .. .x    |  0  4 |  0   0  2  2 |  *  *   *   * 30  * | 0  0  2  0  0  0  2 0 |  0  1  2 0 1
.. .. .o5.x    |  0  5 |  0   0  0  5 |  *  *   *   *  * 24 | 0  0  0  0  0  1  1 1 |  0  0  1 1 1
---------------+-------+--------------+---------------------+-----------------------+-------------
.. x.3o.5o.    ♦ 12  0 | 30   0  0  0 | 20  0   0   0  0  0 | 1  *  *  *  *  *  * * |  0  0  0 2 0
ox xo .. ..&#x ♦  2  2 |  1   4  1  0 |  0  2   2   0  0  0 | * 60  *  *  *  *  * * |  1  1  0 0 0
ox .. .. ox&#x ♦  1  4 |  0   4  2  2 |  0  2   0   2  1  0 | *  * 60  *  *  *  * * |  0  1  1 0 0
.. xo3oo ..&#x ♦  3  1 |  3   3  0  0 |  1  0   3   0  0  0 | *  *  * 40  *  *  * * |  1  0  0 1 0
.. xo .. ox&#x ♦  2  2 |  1   4  0  1 |  0  0   2   2  0  0 | *  *  *  * 60  *  * * |  0  1  0 1 0
.. .. oo5ox&#x ♦  1  5 |  0   5  0  5 |  0  0   0   5  0  1 | *  *  *  *  * 24  * * |  0  0  1 1 0
.x .. .o5.x    ♦  0 10 |  0   0  5 10 |  0  0   0   0  5  2 | *  *  *  *  *  * 12 * |  0  0  1 0 1
.. .o3.o5.x    ♦  0 20 |  0   0  0 30 |  0  0   0   0  0 12 | *  *  *  *  *  *  * 2 |  0  0  0 1 1
---------------+-------+--------------+---------------------+-----------------------+-------------
ox xo3oo ..&#x ♦  3  2 |  3   6  1  0 |  1  3   6   0  0  0 | 0  3  0  2  0  0  0 0 | 20  *  * * *
ox xo .. ox&#x ♦  2  4 |  1   8  2  2 |  0  4   4   4  1  0 | 0  2  2  0  2  0  0 0 |  * 30  * * *
ox .. oo5ox&#x ♦  1 10 |  0  10  5 10 |  0  5   0  10  5  2 | 0  0  5  0  0  2  1 0 |  *  * 12 * *
.. xo3oo5ox&#x ♦ 12 20 | 30  60  0 30 | 20  0  60  60  0 12 | 1  0  0 20 30 12  0 1 |  *  *  * 2 *
.x .o3.o5.x    ♦  0 40 |  0   0 20 60 |  0  0   0   0 30 24 | 0  0  0  0  0  0 12 2 |  *  *  * * 1
```