Acronym gissiddip
Name great-stellated-dodecahedron prism
Cross sections
 ©
Circumradius sqrt[(11-3 sqrt(5))/8] = 0.732444
Colonel of regiment (is itself locally convex – no other uniform polychoral members)
Dihedral angles
  • at {5/2} between gissid and stip:   90°
  • at {4} between stip and stip:   arccos(1/sqrt(5)) = 63.434949°
Face vector 40, 80, 54, 14
Confer
general polytopal classes:
Wythoffian polychora  
External
links
hedrondude   polytopewiki  

As abstract polytope gissiddip is isomorphic to dope, thereby replacing pentagrams by pentagons resp. replacing gissid by doe and stip by pip.


Incidence matrix according to Dynkin symbol

x o3o5/2x

. . .   . | 40 |  1  3 |  3  3 |  3 1
----------+----+-------+-------+-----
x . .   . |  2 | 20  * |  3  0 |  3 0
. . .   x |  2 |  * 60 |  1  2 |  2 1
----------+----+-------+-------+-----
x . .   x |  4 |  2  2 | 30  * |  2 0
. . o5/2x |  5 |  0  5 |  * 24 |  1 1
----------+----+-------+-------+-----
x . o5/2x  10 |  5 10 |  5  2 | 12 *
. o3o5/2x  20 |  0 30 |  0 12 |  * 2

snubbed forms: β2o3o5/2β

x o3o5/3x

. . .   . | 40 |  1  3 |  3  3 |  3 1
----------+----+-------+-------+-----
x . .   . |  2 | 20  * |  3  0 |  3 0
. . .   x |  2 |  * 60 |  1  2 |  2 1
----------+----+-------+-------+-----
x . .   x |  4 |  2  2 | 30  * |  2 0
. . o5/3x |  5 |  0  5 |  * 24 |  1 1
----------+----+-------+-------+-----
x . o5/3x  10 |  5 10 |  5  2 | 12 *
. o3o5/3x  20 |  0 30 |  0 12 |  * 2

x o3/2o5/2x

. .   .   . | 40 |  1  3 |  3  3 |  3 1
------------+----+-------+-------+-----
x .   .   . |  2 | 20  * |  3  0 |  3 0
. .   .   x |  2 |  * 60 |  1  2 |  2 1
------------+----+-------+-------+-----
x .   .   x |  4 |  2  2 | 30  * |  2 0
. .   o5/2x |  5 |  0  5 |  * 24 |  1 1
------------+----+-------+-------+-----
x .   o5/2x  10 |  5 10 |  5  2 | 12 *
. o3/2o5/2x  20 |  0 30 |  0 12 |  * 2

x o3/2o5/3x

. .   .   . | 40 |  1  3 |  3  3 |  3 1
------------+----+-------+-------+-----
x .   .   . |  2 | 20  * |  3  0 |  3 0
. .   .   x |  2 |  * 60 |  1  2 |  2 1
------------+----+-------+-------+-----
x .   .   x |  4 |  2  2 | 30  * |  2 0
. .   o5/3x |  5 |  0  5 |  * 24 |  1 1
------------+----+-------+-------+-----
x .   o5/3x  10 |  5 10 |  5  2 | 12 *
. o3/2o5/3x  20 |  0 30 |  0 12 |  * 2

oo3oo5/2xx&#x   → height = 1
(gissid || gissid)

o.3o.5/2o.    | 20  * |  3  1  0 |  3  3  0 | 1  3 0
.o3.o5/2.o    |  * 20 |  0  1  3 |  0  3  3 | 0  3 1
--------------+-------+----------+----------+-------
.. ..   x.    |  2  0 | 30  *  * |  2  1  0 | 1  2 0
oo3oo5/2oo&#x |  1  1 |  * 20  * |  0  3  0 | 0  3 0
.. ..   .x    |  0  2 |  *  * 30 |  0  1  2 | 0  2 1
--------------+-------+----------+----------+-------
.. o.5/2x.    |  5  0 |  5  0  0 | 12  *  * | 1  1 0
.. ..   xx&#x |  2  2 |  1  2  1 |  * 30  * | 0  2 0
.. .o5/2.x    |  0  5 |  0  0  5 |  *  * 12 | 0  1 1
--------------+-------+----------+----------+-------
o.3o.5/2x.     20  0 | 30  0  0 | 12  0  0 | 1  * *
.. oo5/2xx&#x   5  5 |  5  5  5 |  1  5  1 | * 12 *
.o3.o5/2.x      0 20 |  0  0 30 |  0  0 12 | *  * 1

© 2004-2025
top of page