Acronym | gissiddip |
Name | great-stellated-dodecahedron prism |
Cross sections |
© |
Circumradius | sqrt[(11-3 sqrt(5))/8] = 0.732444 |
Colonel of regiment | (is itself locally convex – no other uniform polychoral members) |
Dihedral angles | |
Face vector | 40, 80, 54, 14 |
Confer |
|
External links |
As abstract polytope gissiddip is isomorphic to dope, thereby replacing pentagrams by pentagons resp. replacing gissid by doe and stip by pip.
Incidence matrix according to Dynkin symbol
x o3o5/2x . . . . | 40 | 1 3 | 3 3 | 3 1 ----------+----+-------+-------+----- x . . . | 2 | 20 * | 3 0 | 3 0 . . . x | 2 | * 60 | 1 2 | 2 1 ----------+----+-------+-------+----- x . . x | 4 | 2 2 | 30 * | 2 0 . . o5/2x | 5 | 0 5 | * 24 | 1 1 ----------+----+-------+-------+----- x . o5/2x ♦ 10 | 5 10 | 5 2 | 12 * . o3o5/2x ♦ 20 | 0 30 | 0 12 | * 2 snubbed forms: β2o3o5/2β
x o3o5/3x . . . . | 40 | 1 3 | 3 3 | 3 1 ----------+----+-------+-------+----- x . . . | 2 | 20 * | 3 0 | 3 0 . . . x | 2 | * 60 | 1 2 | 2 1 ----------+----+-------+-------+----- x . . x | 4 | 2 2 | 30 * | 2 0 . . o5/3x | 5 | 0 5 | * 24 | 1 1 ----------+----+-------+-------+----- x . o5/3x ♦ 10 | 5 10 | 5 2 | 12 * . o3o5/3x ♦ 20 | 0 30 | 0 12 | * 2
x o3/2o5/2x . . . . | 40 | 1 3 | 3 3 | 3 1 ------------+----+-------+-------+----- x . . . | 2 | 20 * | 3 0 | 3 0 . . . x | 2 | * 60 | 1 2 | 2 1 ------------+----+-------+-------+----- x . . x | 4 | 2 2 | 30 * | 2 0 . . o5/2x | 5 | 0 5 | * 24 | 1 1 ------------+----+-------+-------+----- x . o5/2x ♦ 10 | 5 10 | 5 2 | 12 * . o3/2o5/2x ♦ 20 | 0 30 | 0 12 | * 2
x o3/2o5/3x . . . . | 40 | 1 3 | 3 3 | 3 1 ------------+----+-------+-------+----- x . . . | 2 | 20 * | 3 0 | 3 0 . . . x | 2 | * 60 | 1 2 | 2 1 ------------+----+-------+-------+----- x . . x | 4 | 2 2 | 30 * | 2 0 . . o5/3x | 5 | 0 5 | * 24 | 1 1 ------------+----+-------+-------+----- x . o5/3x ♦ 10 | 5 10 | 5 2 | 12 * . o3/2o5/3x ♦ 20 | 0 30 | 0 12 | * 2
oo3oo5/2xx&#x → height = 1
(gissid || gissid)
o.3o.5/2o. | 20 * | 3 1 0 | 3 3 0 | 1 3 0
.o3.o5/2.o | * 20 | 0 1 3 | 0 3 3 | 0 3 1
--------------+-------+----------+----------+-------
.. .. x. | 2 0 | 30 * * | 2 1 0 | 1 2 0
oo3oo5/2oo&#x | 1 1 | * 20 * | 0 3 0 | 0 3 0
.. .. .x | 0 2 | * * 30 | 0 1 2 | 0 2 1
--------------+-------+----------+----------+-------
.. o.5/2x. | 5 0 | 5 0 0 | 12 * * | 1 1 0
.. .. xx&#x | 2 2 | 1 2 1 | * 30 * | 0 2 0
.. .o5/2.x | 0 5 | 0 0 5 | * * 12 | 0 1 1
--------------+-------+----------+----------+-------
o.3o.5/2x. ♦ 20 0 | 30 0 0 | 12 0 0 | 1 * *
.. oo5/2xx&#x ♦ 5 5 | 5 5 5 | 1 5 1 | * 12 *
.o3.o5/2.x ♦ 0 20 | 0 0 30 | 0 0 12 | * * 1
© 2004-2025 | top of page |