Acronym gissiddip
Name great-stellated-dodecahedron prism
Cross sections
 ©
Circumradius sqrt[(11-3 sqrt(5))/8] = 0.732444
Colonel of regiment (is itself locally convex – no other uniform polychoral members)
Dihedral angles
  • at {5/2} between gissid and stip:   90°
  • at {4} between stip and stip:   arccos(1/sqrt(5)) = 63.434949°
External
links
hedrondude  

As abstract polytope gissiddip is isomorphic to dope, thereby replacing pentagrams by pentagons resp. replacing gissid by doe and stip by pip.


Incidence matrix according to Dynkin symbol

x o3o5/2x

. . .   . | 40 |  1  3 |  3  3 |  3 1
----------+----+-------+-------+-----
x . .   . |  2 | 20  * |  3  0 |  3 0
. . .   x |  2 |  * 60 |  1  2 |  2 1
----------+----+-------+-------+-----
x . .   x |  4 |  2  2 | 30  * |  2 0
. . o5/2x |  5 |  0  5 |  * 24 |  1 1
----------+----+-------+-------+-----
x . o5/2x  10 |  5 10 |  5  2 | 12 *
. o3o5/2x  20 |  0 30 |  0 12 |  * 2

snubbed forms: β2o3o5/2β

x o3o5/3x

. . .   . | 40 |  1  3 |  3  3 |  3 1
----------+----+-------+-------+-----
x . .   . |  2 | 20  * |  3  0 |  3 0
. . .   x |  2 |  * 60 |  1  2 |  2 1
----------+----+-------+-------+-----
x . .   x |  4 |  2  2 | 30  * |  2 0
. . o5/3x |  5 |  0  5 |  * 24 |  1 1
----------+----+-------+-------+-----
x . o5/3x  10 |  5 10 |  5  2 | 12 *
. o3o5/3x  20 |  0 30 |  0 12 |  * 2

x o3/2o5/2x

. .   .   . | 40 |  1  3 |  3  3 |  3 1
------------+----+-------+-------+-----
x .   .   . |  2 | 20  * |  3  0 |  3 0
. .   .   x |  2 |  * 60 |  1  2 |  2 1
------------+----+-------+-------+-----
x .   .   x |  4 |  2  2 | 30  * |  2 0
. .   o5/2x |  5 |  0  5 |  * 24 |  1 1
------------+----+-------+-------+-----
x .   o5/2x  10 |  5 10 |  5  2 | 12 *
. o3/2o5/2x  20 |  0 30 |  0 12 |  * 2

x o3/2o5/3x

. .   .   . | 40 |  1  3 |  3  3 |  3 1
------------+----+-------+-------+-----
x .   .   . |  2 | 20  * |  3  0 |  3 0
. .   .   x |  2 |  * 60 |  1  2 |  2 1
------------+----+-------+-------+-----
x .   .   x |  4 |  2  2 | 30  * |  2 0
. .   o5/3x |  5 |  0  5 |  * 24 |  1 1
------------+----+-------+-------+-----
x .   o5/3x  10 |  5 10 |  5  2 | 12 *
. o3/2o5/3x  20 |  0 30 |  0 12 |  * 2

oo3oo5/2xx&#x   → height = 1
(gissid || gissid)

o.3o.5/2o.    | 20  * |  3  1  0 |  3  3  0 | 1  3 0
.o3.o5/2.o    |  * 20 |  0  1  3 |  0  3  3 | 0  3 1
--------------+-------+----------+----------+-------
.. ..   x.    |  2  0 | 30  *  * |  2  1  0 | 1  2 0
oo3oo5/2oo&#x |  1  1 |  * 20  * |  0  3  0 | 0  3 0
.. ..   .x    |  0  2 |  *  * 30 |  0  1  2 | 0  2 1
--------------+-------+----------+----------+-------
.. o.5/2x.    |  5  0 |  5  0  0 | 12  *  * | 1  1 0
.. ..   xx&#x |  2  2 |  1  2  1 |  * 30  * | 0  2 0
.. .o5/2.x    |  0  5 |  0  0  5 |  *  * 12 | 0  1 1
--------------+-------+----------+----------+-------
o.3o.5/2x.     20  0 | 30  0  0 | 12  0  0 | 1  * *
.. oo5/2xx&#x   5  5 |  5  5  5 |  1  5  1 | * 12 *
.o3.o5/2.x      0 20 |  0  0 30 |  0  0 12 | *  * 1

© 2004-2019
top of page