Acronym pybiscrox
Name pyritohedral bistratic icosahedron-first cap of rectified hexacosachoron
Circumradius sqrt[5+2 sqrt(5)] = 3.077684
Lace city
in approx. ASCII-art
                     x2o  o2f    f2x    o2f  x2o                     		-- ike
                                                                     
                                                                     
              x2f    F2x  f2F           f2F  F2x    x2f              		-- id \ fq-oct
                                                                     
                                                                     
                                                                     
                                                                     
                                                                     
x2x  o2F F2f Af2oV   V2F xB2Bx   F2A   xB2Bx V2F   Af2oV F2f o2F  x2x		-- srid
                                                                     _
                                                                       -_
                                                                          +-- pip

where: 
F=ff=f+x, V=2f, A=F+x=f+u=f+2x, B=V+x=2f+x
Face vector 96, 330, 318, 84
Confer
uniform relative:
rox  
related CRFs:
biscrox   doe || (id \ fq-oct) || f-ike || doe  

This polychoron is obtained from biscrox, the bistratic ike-first cap of rox, by means of the observation that the vertex figure of rox is pip. Although not all vertices could be such diminished without producing mutual intersections and without leaving the realm of CRFs, it well is possible to do so only within the medial layer and even there with pyritohedral subsymmetry only. In fact, it was obtained at the beginning of 2021 by a guy calling himself "puffer fish" by applying that diminishing at those vertices of the medial layer id which correspond to a vertex-inscribed fq-oct only.


Incidence matrix

ike || pseudo (id \ fq-oct) || srid   → height(1,2) = (sqrt(5)-1)/4 = 0.309017
                                      height(2,3) = 1/2

12  *  *  *  * | 1  4  2  2  0  0  0  0  0  0  0  0  0  0  0  0 |  3 2  4  2  1  2  1 0  0  0  0  0  0  0  0 0  0  0  0 0 | 1  3 2 1  1 0  0  0 0  top layer
 * 24  *  *  * | 0  0  1  1  1  2  1  1  1  1  0  0  0  0  0  0 |  0 0  1  1  1  2  1 1  1  1  2  1  1  1  1 0  0  0  0 0 | 0  1 1 1  2 1  1  1 0  equatorial layer
 *  * 24  *  * | 0  0  0  0  0  0  1  0  0  0  1  1  1  1  0  0 |  0 0  0  0  0  0  1 0  1  0  0  1  1  0  0 1  1  1  1 0 | 0  0 0 1  1 0  1  1 1  vertices of octahedrally situated {4} of bottom layer (A)
 *  *  * 12  * | 0  0  0  0  0  0  0  2  0  0  0  0  2  0  2  0 |  0 0  0  0  0  0  0 0  0  1  0  2  0  2  0 0  1  1  2 0 | 0  0 0 0  1 0  1  2 1  tip-vertices of adjacent {3} of bottom layer (B)
 *  *  *  * 24 | 0  0  0  0  0  0  0  0  1  1  0  0  0  1  1  2 |  0 0  0  0  0  0  0 0  0  0  1  0  1  1  2 0  0  1  2 1 | 0  0 0 0  1 1  0  2 1  vertices of cubical situated {3} of bottom layer (C)
---------------+------------------------------------------------+---------------------------------------------------------+----------------------
 2  0  0  0  0 | 6  *  *  *  *  *  *  *  *  *  *  *  *  *  *  * |  2 0  0  2  0  0  0 0  0  0  0  0  0  0  0 0  0  0  0 0 | 1  2 0 1  0 0  0  0 0  octahedrally situated edges of top layer
 2  0  0  0  0 | * 24  *  *  *  *  *  *  *  *  *  *  *  *  *  * |  1 1  1  0  0  0  0 0  0  0  0  0  0  0  0 0  0  0  0 0 | 1  1 1 0  0 0  0  0 0  other edges of top layer
 1  1  0  0  0 | *  * 24  *  *  *  *  *  *  *  *  *  *  *  *  * |  0 0  1  1  0  1  1 0  0  0  0  0  0  0  0 0  0  0  0 0 | 0  1 1 1  1 0  0  0 0  upper edges along the pips
 1  1  0  0  0 | *  *  * 24  *  *  *  *  *  *  *  *  *  *  *  * |  0 0  1  0  1  1  0 0  0  0  0  0  0  0  0 0  0  0  0 0 | 0  1 1 0  1 0  0  0 0  other upper edges
 0  2  0  0  0 | *  *  *  * 12  *  *  *  *  *  *  *  *  *  *  * |  0 0  0  1  1  0  0 0  1  1  0  0  0  0  0 0  0  0  0 0 | 0  1 0 1  1 0  1  0 0  base-edges of former {5} of medial layer
 0  2  0  0  0 | *  *  *  *  * 24  *  *  *  *  *  *  *  *  *  * |  0 0  0  0  0  1  0 1  0  0  1  0  0  0  0 0  0  0  0 0 | 0  0 1 0  1 1  0  0 0  edges of remaining {3} of medial layer
 0  1  1  0  0 | *  *  *  *  *  * 24  *  *  *  *  *  *  *  *  * |  0 0  0  0  0  0  1 0  1  0  0  1  1  0  0 0  0  0  0 0 | 0  0 0 1  1 0  1  1 0
 0  1  0  1  0 | *  *  *  *  *  *  * 24  *  *  *  *  *  *  *  * |  0 0  0  0  0  0  0 0  0  1  0  1  0  1  0 0  0  0  0 0 | 0  0 0 0  1 0  1  1 0
 0  1  0  0  1 | *  *  *  *  *  *  *  * 24  *  *  *  *  *  *  * |  0 0  0  0  0  0  0 0  0  0  1  0  1  0  1 0  0  0  0 0 | 0  0 0 0  1 1  0  1 0  leaning towards the (A) bottom vertex
 0  1  0  0  1 | *  *  *  *  *  *  *  *  * 24  *  *  *  *  *  * |  0 0  0  0  0  0  0 0  0  0  1  0  0  1  1 0  0  0  0 0 | 0  0 0 0  1 1  0  1 0  leaning towards the (B) bottom vertex
 0  0  2  0  0 | *  *  *  *  *  *  *  *  *  * 12  *  *  *  *  * |  0 0  0  0  0  0  0 0  1  0  0  0  0  0  0 1  1  0  0 0 | 0  0 0 1  0 0  1  0 1  connecting {3} and {4} in bottom layer
 0  0  2  0  0 | *  *  *  *  *  *  *  *  *  *  * 12  *  *  *  * |  0 0  0  0  0  0  1 0  0  0  0  0  0  0  0 1  0  1  0 0 | 0  0 0 1  1 0  0  0 1  connecting {4} and {5} in bottom layer
 0  0  1  1  0 | *  *  *  *  *  *  *  *  *  *  *  * 24  *  *  * |  0 0  0  0  0  0  0 0  0  0  0  1  0  0  0 0  1  0  1 0 | 0  0 0 0  0 0  1  1 1
 0  0  1  0  1 | *  *  *  *  *  *  *  *  *  *  *  *  * 24  *  * |  0 0  0  0  0  0  0 0  0  0  0  0  1  0  0 0  0  1  1 0 | 0  0 0 0  1 0  0  1 1
 0  0  0  1  1 | *  *  *  *  *  *  *  *  *  *  *  *  *  * 24  * |  0 0  0  0  0  0  0 0  0  0  0  0  0  1  0 0  0  1  1 0 | 0  0 0 0  1 0  0  1 1
 0  0  0  0  2 | *  *  *  *  *  *  *  *  *  *  *  *  *  *  * 24 |  0 0  0  0  0  0  0 0  0  0  0  0  0  0  1 0  0  0  1 1 | 0  0 0 0  0 1  0  1 1
---------------+------------------------------------------------+---------------------------------------------------------+----------------------
 3  0  0  0  0 | 1  2  0  0  0  0  0  0  0  0  0  0  0  0  0  0 | 12 *  *  *  *  *  * *  *  *  *  *  *  *  * *  *  *  * * | 1  1 0 0  0 0  0  0 0  {3} adjacent to octahedrally situated edges of top layer
 3  0  0  0  0 | 0  3  0  0  0  0  0  0  0  0  0  0  0  0  0  0 |  * 8  *  *  *  *  * *  *  *  *  *  *  *  * *  *  *  * * | 1  0 1 0  0 0  0  0 0  cubical situated {3} of top layer
 2  1  0  0  0 | 0  1  1  1  0  0  0  0  0  0  0  0  0  0  0  0 |  * * 24  *  *  *  * *  *  *  *  *  *  *  * *  *  *  * * | 0  1 1 0  0 0  0  0 0
 2  2  0  0  0 | 1  0  2  0  1  0  0  0  0  0  0  0  0  0  0  0 |  * *  * 12  *  *  * *  *  *  *  *  *  *  * *  *  *  * * | 0  1 0 1  0 0  0  0 0
 1  2  0  0  0 | 0  0  0  2  1  0  0  0  0  0  0  0  0  0  0  0 |  * *  *  * 12  *  * *  *  *  *  *  *  *  * *  *  *  * * | 0  1 0 0  1 0  0  0 0  adjoining the base-edges of former {5} of medial layer
 1  2  0  0  0 | 0  0  1  1  0  1  0  0  0  0  0  0  0  0  0  0 |  * *  *  *  * 24  * *  *  *  *  *  *  *  * *  *  *  * * | 0  0 1 0  1 0  0  0 0  adjoining the edges of remaining {3} of medial layer
 1  2  2  0  0 | 0  0  2  0  0  0  2  0  0  0  0  1  0  0  0  0 |  * *  *  *  *  * 12 *  *  *  *  *  *  *  * *  *  *  * * | 0  0 0 1  1 0  0  0 0
 0  3  0  0  0 | 0  0  0  0  0  3  0  0  0  0  0  0  0  0  0  0 |  * *  *  *  *  *  * 8  *  *  *  *  *  *  * *  *  *  * * | 0  0 1 0  0 1  0  0 0
 0  2  2  0  0 | 0  0  0  0  1  0  2  0  0  0  1  0  0  0  0  0 |  * *  *  *  *  *  * * 12  *  *  *  *  *  * *  *  *  * * | 0  0 0 1  0 0  1  0 0
 0  2  0  1  0 | 0  0  0  0  1  0  0  2  0  0  0  0  0  0  0  0 |  * *  *  *  *  *  * *  * 12  *  *  *  *  * *  *  *  * * | 0  0 0 0  1 0  1  0 0
 0  2  0  0  1 | 0  0  0  0  0  1  0  0  1  1  0  0  0  0  0  0 |  * *  *  *  *  *  * *  *  * 24  *  *  *  * *  *  *  * * | 0  0 0 0  1 1  0  0 0
 0  1  1  1  0 | 0  0  0  0  0  0  1  1  0  0  0  0  1  0  0  0 |  * *  *  *  *  *  * *  *  *  * 24  *  *  * *  *  *  * * | 0  0 0 0  0 0  1  1 0
 0  1  1  0  1 | 0  0  0  0  0  0  1  0  1  0  0  0  0  1  0  0 |  * *  *  *  *  *  * *  *  *  *  * 24  *  * *  *  *  * * | 0  0 0 0  1 0  0  1 0
 0  1  0  1  1 | 0  0  0  0  0  0  0  1  0  1  0  0  0  0  1  0 |  * *  *  *  *  *  * *  *  *  *  *  * 24  * *  *  *  * * | 0  0 0 0  1 0  0  1 0
 0  1  0  0  2 | 0  0  0  0  0  0  0  0  1  1  0  0  0  0  0  1 |  * *  *  *  *  *  * *  *  *  *  *  *  * 24 *  *  *  * * | 0  0 0 0  0 1  0  1 0
 0  0  4  0  0 | 0  0  0  0  0  0  0  0  0  0  2  2  0  0  0  0 |  * *  *  *  *  *  * *  *  *  *  *  *  *  * 6  *  *  * * | 0  0 0 1  0 0  0  0 1
 0  0  2  1  0 | 0  0  0  0  0  0  0  0  0  0  1  0  2  0  0  0 |  * *  *  *  *  *  * *  *  *  *  *  *  *  * * 12  *  * * | 0  0 0 0  0 0  1  0 1
 0  0  2  1  2 | 0  0  0  0  0  0  0  0  0  0  0  1  0  2  2  0 |  * *  *  *  *  *  * *  *  *  *  *  *  *  * *  * 12  * * | 0  0 0 0  1 0  0  0 1
 0  0  1  1  2 | 0  0  0  0  0  0  0  0  0  0  0  0  1  1  1  1 |  * *  *  *  *  *  * *  *  *  *  *  *  *  * *  *  * 24 * | 0  0 0 0  0 0  0  1 1
 0  0  0  0  3 | 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  3 |  * *  *  *  *  *  * *  *  *  *  *  *  *  * *  *  *  * 8 | 0  0 0 0  0 1  0  0 1
---------------+------------------------------------------------+---------------------------------------------------------+----------------------
12  0  0  0  0 | 6 24  0  0  0  0  0  0  0  0  0  0  0  0  0  0 | 12 8  0  0  0  0  0 0  0  0  0  0  0  0  0 0  0  0  0 0 | 1  * * *  * *  *  * *  top ike
 3  2  0  0  0 | 1  2  2  2  1  0  0  0  0  0  0  0  0  0  0  0 |  1 0  2  1  1  0  0 0  0  0  0  0  0  0  0 0  0  0  0 0 | * 12 * *  * *  *  * *  top squippy
 3  3  0  0  0 | 0  3  3  3  0  3  0  0  0  0  0  0  0  0  0  0 |  0 1  3  0  0  3  0 1  0  0  0  0  0  0  0 0  0  0  0 0 | *  * 8 *  * *  *  * *  top oct
 2  4  4  0  0 | 1  0  4  0  2  0  4  0  0  0  2  2  0  0  0  0 |  0 0  0  2  0  0  2 0  2  0  0  0  0  0  0 1  0  0  0 0 | *  * * 6  * *  *  * *  pip
 1  4  2  1  2 | 0  0  2  2  1  2  2  2  2  2  0  1  0  2  2  0 |  0 0  0  0  1  2  1 0  0  1  2  0  2  2  0 0  0  1  0 0 | *  * * * 12 *  *  * *  mibdi
 0  3  0  0  3 | 0  0  0  0  0  3  0  0  3  3  0  0  0  0  0  3 |  0 0  0  0  0  0  0 1  0  0  3  0  0  0  3 0  0  0  0 1 | *  * * *  * 8  *  * *  bottom oct
 0  2  2  1  0 | 0  0  0  0  1  0  2  2  0  0  1  0  2  0  0  0 |  0 0  0  0  0  0  0 0  1  1  0  2  0  0  0 0  1  0  0 0 | *  * * *  * * 12  * *  bottom squippy
 0  1  1  1  2 | 0  0  0  0  0  0  1  1  1  1  0  0  1  1  1  1 |  0 0  0  0  0  0  0 0  0  0  0  1  1  1  1 0  0  0  1 0 | *  * * *  * *  * 24 *  remaining base squippy
 0  0 24 12 24 | 0  0  0  0  0  0  0  0  0  0 12 12 24 24 24 24 |  0 0  0  0  0  0  0 0  0  0  0  0  0  0  0 6 12 12 24 8 | *  * * *  * *  *  * 1  base srid

© 2004-2025
top of page