----
5D
----
This page is available sorted by point-group symmetry (below)
or by complexity (older version).
Terse Overview of Irreduzible Dynkin Graph Types
(For obvious reasons only the existing 4D graph types, which exist as subgroups in 5D as well, have to be extended here.)
o--P--o--Q--o--R--o--S--o
|
o-P-o-Q-o *b-R-o-S-o =
o_
-P_
>o--R--o--S--o
_Q-
o-
|
o-P-o-Q-o-R-o-S-o-T-*c =
_o
_R- |
o--P--o--Q--o< | S
-T_ |
-o
|
o-P-o-Q-o-R-o-S-o-T-*b =
o---P---o---Q---o
| |
T R
| |
o---S---o
|
o-P-o-Q-o-R-o *b-S-o-T-*c =
o--P--o--Q--o--R--o
\ /
S \ / T
o
|
o-P-o-Q-o-R-o-S-*b-T-o =
o_ _o
-P_ _Q- |
>o< | R
_T- -S_ |
o- -o
|
o-P-o-Q-o-R-o-S-o-T-*b *c-U-*e =
o---P---o---Q---o
\ / \
T U R
\ / \
o---S---o
|
o-P-o-Q-o-R-o-S-o-T-*b-U-*d =
o---Q---o---P---o
\ / \
R U T
\ / \
o---S---o
|
o-P-o-Q-o-R-*a-S-o-T-o-U-*a =
o_ _o
| -P_ _U- |
Q | >o< | T
| _R- -S_ |
o- -o
|
o-P-o-Q-o-R-o-S-o-T-*a =
_o_
_T- -P_
o- -o
\ /
S Q
\ /
o---R---o
|
o-P-o-Q-o-R-o-S-o-T-*a-U-*c =
o---T---o_
| | -P_
S U >o
| | _Q-
o---R---o
|
o-P-o-Q-o-R-*a-S-o-T-o-U-*a *c-V-*e =
o---P---o---U---o
\ / \ /
Q R S T
\ / \ /
o---V---o
|
o-P-o-Q-o-R-o-S-o-T-*b-U-*d *c-V-*e =
_o
_- /|
_Q- R |
_- / |
o---P---o<---U---o V
-_ \ |
-T_ S |
-_ \|
-o
|
|
In the following symmetry listings "etc." means replacments according to 3 ↔ 3/2,
to 4 ↔ 4/3, to 5 ↔ 5/4, or to 5/2 ↔ 5/3.
Polytera with Grünbaumian elements so far are not investigated
any further.
Those are Grünbaumian a priori, usually because of some subgraph -x-n/d-x-, where d is even.
Others, which come out as being Grünbaumian a posteriori will be given none the less.
o-P-o-Q-o-R-o *b-S-o-T-*c =
o--P--o--Q--o--R--o
\ /
S \ / T
o
|
Hexateral Symmetries (up)
x3o3o3o *b3o3/2*c - (contains "2pen")
o3x3o3o *b3o3/2*c - (contains "2tet")
o3o3x3o *b3o3/2*c - (contains "2tet")
o3o3o3x *b3o3/2*c - (contains "2pen")
o3o3o3o *b3x3/2*c - (contains "2tet")
x3x3o3o *b3o3/2*c - (contains "2tet")
x3o3x3o *b3o3/2*c - (contains "2tet")
x3o3o3x *b3o3/2*c - (contains "2pen")
x3o3o3o *b3x3/2*c - (contains "2tet")
o3x3x3o *b3o3/2*c - rabird
o3x3o3x *b3o3/2*c - (contains "2tet")
o3x3o3o *b3x3/2*c - rippix
o3o3x3x *b3o3/2*c - (contains "2tet")
o3o3x3o *b3x3/2*c - [Grünbaumian]
o3o3o3x *b3x3/2*c - (contains "2tet")
x3x3x3o *b3o3/2*c - roptix
x3x3o3x *b3o3/2*c - (contains "2tet")
x3x3o3o *b3x3/2*c - racpix
x3o3x3x *b3o3/2*c - (contains "2tet")
x3o3x3o *b3x3/2*c - [Grünbaumian]
x3o3o3x *b3x3/2*c - (contains "2tet")
o3x3x3x *b3o3/2*c - roptix
o3x3x3o *b3x3/2*c - [Grünbaumian]
o3x3o3x *b3x3/2*c - (contains "2thah")
o3o3x3x *b3x3/2*c - [Grünbaumian]
x3x3x3x *b3o3/2*c - recaptid
x3x3x3o *b3x3/2*c - [Grünbaumian]
x3x3o3x *b3x3/2*c - (contains "2thah")
x3o3x3x *b3x3/2*c - [Grünbaumian]
o3x3x3x *b3x3/2*c - [Grünbaumian]
x3x3x3x *b3x3/2*c - [Grünbaumian]
|
x3o3o3/2o *b3o3/2*c - (contains "2pen")
o3x3o3/2o *b3o3/2*c - (contains "2tet")
o3o3x3/2o *b3o3/2*c - (contains "2tet")
o3o3o3/2x *b3o3/2*c - (contains "2pen")
o3o3o3/2o *b3x3/2*c - (contains "2tet")
x3x3o3/2o *b3o3/2*c - (contains "2tet")
x3o3x3/2o *b3o3/2*c - (contains "2tet")
x3o3o3/2x *b3o3/2*c - (contains "2pen")
x3o3o3/2o *b3x3/2*c - (contains "2tet")
o3x3x3/2o *b3o3/2*c - rabird
o3x3o3/2x *b3o3/2*c - (contains "2tet")
o3x3o3/2o *b3x3/2*c - rippix
o3o3x3/2x *b3o3/2*c - [Grünbaumian]
o3o3x3/2o *b3x3/2*c - [Grünbaumian]
o3o3o3/2x *b3x3/2*c - (contains "2tet")
x3x3x3/2o *b3o3/2*c - roptix
x3x3o3/2x *b3o3/2*c - (contains "2tet")
x3x3o3/2o *b3x3/2*c - racpix
x3o3x3/2x *b3o3/2*c - [Grünbaumian]
x3o3x3/2o *b3x3/2*c - [Grünbaumian]
x3o3o3/2x *b3x3/2*c - (contains "2tet")
o3x3x3/2x *b3o3/2*c - [Grünbaumian]
o3x3x3/2o *b3x3/2*c - [Grünbaumian]
o3x3o3/2x *b3x3/2*c - (contains "2thah")
o3o3x3/2x *b3x3/2*c - [Grünbaumian]
x3x3x3/2x *b3o3/2*c - [Grünbaumian]
x3x3x3/2o *b3x3/2*c - [Grünbaumian]
x3x3o3/2x *b3x3/2*c - (contains "2thah")
x3o3x3/2x *b3x3/2*c - [Grünbaumian]
o3x3x3/2x *b3x3/2*c - [Grünbaumian]
x3x3x3/2x *b3x3/2*c - [Grünbaumian]
|
x3/2o3o3o *b3o3/2*c - (contains "2pen")
o3/2x3o3o *b3o3/2*c - (contains "2tet")
o3/2o3x3o *b3o3/2*c - (contains "2tet")
o3/2o3o3x *b3o3/2*c - (contains "2pen")
o3/2o3o3o *b3x3/2*c - (contains "2tet")
x3/2x3o3o *b3o3/2*c - [Grünbaumian]
x3/2o3x3o *b3o3/2*c - (contains "2tet")
x3/2o3o3x *b3o3/2*c - (contains "2pen")
x3/2o3o3o *b3x3/2*c - (contains "2tet")
o3/2x3x3o *b3o3/2*c - rabird
o3/2x3o3x *b3o3/2*c - (contains "2tet")
o3/2x3o3o *b3x3/2*c - rippix
o3/2o3x3x *b3o3/2*c - (contains "2tet")
o3/2o3x3o *b3x3/2*c - [Grünbaumian]
o3/2o3o3x *b3x3/2*c - (contains "2tet")
x3/2x3x3o *b3o3/2*c - [Grünbaumian]
x3/2x3o3x *b3o3/2*c - [Grünbaumian]
x3/2x3o3o *b3x3/2*c - [Grünbaumian]
x3/2o3x3x *b3o3/2*c - (contains "2tet")
x3/2o3x3o *b3x3/2*c - [Grünbaumian]
x3/2o3o3x *b3x3/2*c - (contains "2tet")
o3/2x3x3x *b3o3/2*c - roptix
o3/2x3x3o *b3x3/2*c - [Grünbaumian]
o3/2x3o3x *b3x3/2*c - (contains "2thah")
o3/2o3x3x *b3x3/2*c - [Grünbaumian]
x3/2x3x3x *b3o3/2*c - [Grünbaumian]
x3/2x3x3o *b3x3/2*c - [Grünbaumian]
x3/2x3o3x *b3x3/2*c - [Grünbaumian]
x3/2o3x3x *b3x3/2*c - [Grünbaumian]
o3/2x3x3x *b3x3/2*c - [Grünbaumian]
x3/2x3x3x *b3x3/2*c - [Grünbaumian]
|
x3/2o3o3/2o *b3o3/2*c - (contains "2pen")
o3/2x3o3/2o *b3o3/2*c - (contains "2tet")
o3/2o3x3/2o *b3o3/2*c - (contains "2tet")
o3/2o3o3/2x *b3o3/2*c - (contains "2pen")
o3/2o3o3/2o *b3x3/2*c - (contains "2tet")
x3/2x3o3/2o *b3o3/2*c - [Grünbaumian]
x3/2o3x3/2o *b3o3/2*c - (contains "2tet")
x3/2o3o3/2x *b3o3/2*c - (contains "2pen")
x3/2o3o3/2o *b3x3/2*c - (contains "2tet")
o3/2x3x3/2o *b3o3/2*c - rabird
o3/2x3o3/2x *b3o3/2*c - (contains "2tet")
o3/2x3o3/2o *b3x3/2*c - rippix
o3/2o3x3/2x *b3o3/2*c - [Grünbaumian]
o3/2o3x3/2o *b3x3/2*c - [Grünbaumian]
o3/2o3o3/2x *b3x3/2*c - (contains "2tet")
x3/2x3x3/2o *b3o3/2*c - [Grünbaumian]
x3/2x3o3/2x *b3o3/2*c - [Grünbaumian]
x3/2x3o3/2o *b3x3/2*c - [Grünbaumian]
x3/2o3x3/2x *b3o3/2*c - [Grünbaumian]
x3/2o3x3/2o *b3x3/2*c - [Grünbaumian]
x3/2o3o3/2x *b3x3/2*c - (contains "2tet")
o3/2x3x3/2x *b3o3/2*c - [Grünbaumian]
o3/2x3x3/2o *b3x3/2*c - [Grünbaumian]
o3/2x3o3/2x *b3x3/2*c - (contains "2thah")
o3/2o3x3/2x *b3x3/2*c - [Grünbaumian]
x3/2x3x3/2x *b3o3/2*c - [Grünbaumian]
x3/2x3x3/2o *b3x3/2*c - [Grünbaumian]
x3/2x3o3/2x *b3x3/2*c - [Grünbaumian]
x3/2o3x3/2x *b3x3/2*c - [Grünbaumian]
o3/2x3x3/2x *b3x3/2*c - [Grünbaumian]
x3/2x3x3/2x *b3x3/2*c - [Grünbaumian]
|
x3o3/2o3o *b3o3*c - (contains "2pen")
o3x3/2o3o *b3o3*c - (contains "2tet")
o3o3/2o3o *b3x3*c - (contains "2tet")
x3x3/2o3o *b3o3*c - (contains "2tet")
x3o3/2x3o *b3o3*c - (contains "2tet")
x3o3/2o3x *b3o3*c - (contains "2pen")
x3o3/2o3o *b3x3*c - (contains "2tet")
o3x3/2x3o *b3o3*c - [Grünbaumian]
o3x3/2o3o *b3x3*c - rippix
x3x3/2x3o *b3o3*c - [Grünbaumian]
x3x3/2o3x *b3o3*c - (contains "2tet")
x3x3/2o3o *b3x3*c - racpix
x3o3/2x3o *b3x3*c - (contains "2thah")
x3o3/2o3x *b3x3*c - (contains "2tet")
o3x3/2x3o *b3x3*c - [Grünbaumian]
x3x3/2x3x *b3o3*c - [Grünbaumian]
x3x3/2x3o *b3x3*c - [Grünbaumian]
x3x3/2o3x *b3x3*c - (contains "2thah")
x3x3/2x3x *b3x3*c - [Grünbaumian]
|
x3o3/2o3/2o *b3o3*c - (contains "2pen")
o3x3/2o3/2o *b3o3*c - (contains "2tet")
o3o3/2x3/2o *b3o3*c - (contains "2tet")
o3o3/2o3/2x *b3o3*c - (contains "2pen")
o3o3/2o3/2o *b3x3*c - (contains "2tet")
x3x3/2o3/2o *b3o3*c - (contains "2tet")
x3o3/2x3/2o *b3o3*c - (contains "2tet")
x3o3/2o3/2x *b3o3*c - (contains "2pen")
x3o3/2o3/2o *b3x3*c - (contains "2tet")
o3x3/2x3/2o *b3o3*c - [Grünbaumian]
o3x3/2o3/2x *b3o3*c - (contains "2tet")
o3x3/2o3/2o *b3x3*c - rippix
o3o3/2x3/2x *b3o3*c - (contains "2tet")
o3o3/2x3/2o *b3x3*c - rippix
o3o3/2o3/2x *b3x3*c - (contains "2tet")
x3x3/2x3/2o *b3o3*c - [Grünbaumian]
x3x3/2o3/2x *b3o3*c - (contains "2tet")
x3x3/2o3/2o *b3x3*c - racpix
x3o3/2x3/2x *b3o3*c - [Grünbaumian]
x3o3/2x3/2o *b3x3*c - (contains "2thah")
x3o3/2o3/2x *b3x3*c - (contains "2tet")
o3x3/2x3/2x *b3o3*c - [Grünbaumian]
o3x3/2x3/2o *b3x3*c - [Grünbaumian]
o3x3/2o3/2x *b3x3*c - (contains "2thah")
o3o3/2x3/2x *b3x3*c - [Grünbaumian]
x3x3/2x3/2x *b3o3*c - [Grünbaumian]
x3x3/2x3/2o *b3x3*c - [Grünbaumian]
x3x3/2o3/2x *b3x3*c - (contains "2thah")
x3o3/2x3/2x *b3x3*c - [Grünbaumian]
o3x3/2x3/2x *b3x3*c - [Grünbaumian]
x3x3/2x3/2x *b3x3*c - [Grünbaumian]
|
x3/2o3/2o3/2o *b3o3*c - (contains "2pen")
o3/2x3/2o3/2o *b3o3*c - (contains "2tet")
o3/2o3/2o3/2o *b3x3*c - (contains "2tet")
x3/2x3/2o3/2o *b3o3*c - [Grünbaumian]
x3/2o3/2x3/2o *b3o3*c - (contains "2tet")
x3/2o3/2o3/2x *b3o3*c - (contains "2pen")
x3/2o3/2o3/2o *b3x3*c - (contains "2tet")
o3/2x3/2x3/2o *b3o3*c - [Grünbaumian]
o3/2x3/2o3/2o *b3x3*c - rippix
x3/2x3/2x3/2o *b3o3*c - [Grünbaumian]
x3/2x3/2o3/2x *b3o3*c - [Grünbaumian]
x3/2x3/2o3/2o *b3x3*c - [Grünbaumian]
x3/2o3/2x3/2o *b3x3*c - (contains "2thah")
x3/2o3/2o3/2x *b3x3*c - (contains "2tet")
o3/2x3/2x3/2o *b3x3*c - [Grünbaumian]
x3/2x3/2x3/2x *b3o3*c - [Grünbaumian]
x3/2x3/2x3/2o *b3x3*c - [Grünbaumian]
x3/2x3/2o3/2x *b3x3*c - [Grünbaumian]
x3/2x3/2x3/2x *b3x3*c - [Grünbaumian]
|
|
x3o3/2o3o *b3/2o3/2*c - (contains "2pen")
o3x3/2o3o *b3/2o3/2*c - (contains "2tet")
o3o3/2o3o *b3/2x3/2*c - (contains "2tet")
x3x3/2o3o *b3/2o3/2*c - (contains "2tet")
x3o3/2x3o *b3/2o3/2*c - (contains "2tet")
x3o3/2o3x *b3/2o3/2*c - (contains "2pen")
x3o3/2o3o *b3/2x3/2*c - (contains "2tet")
o3x3/2x3o *b3/2o3/2*c - [Grünbaumian]
o3x3/2o3o *b3/2x3/2*c - [Grünbaumian]
x3x3/2x3o *b3/2o3/2*c - [Grünbaumian]
x3x3/2o3x *b3/2o3/2*c - (contains "2tet")
x3x3/2o3o *b3/2x3/2*c - [Grünbaumian]
x3o3/2x3o *b3/2x3/2*c - [Grünbaumian]
x3o3/2o3x *b3/2x3/2*c - (contains "2tet")
o3x3/2x3o *b3/2x3/2*c - [Grünbaumian]
x3x3/2x3x *b3/2o3/2*c - [Grünbaumian]
x3x3/2x3o *b3/2x3/2*c - [Grünbaumian]
x3x3/2o3x *b3/2x3/2*c - [Grünbaumian]
x3x3/2x3x *b3/2x3/2*c - [Grünbaumian]
|
x3o3/2o3/2o *b3/2o3/2*c - (contains "2pen")
o3x3/2o3/2o *b3/2o3/2*c - (contains "2tet")
o3o3/2x3/2o *b3/2o3/2*c - (contains "2tet")
o3o3/2o3/2x *b3/2o3/2*c - (contains "2pen")
o3o3/2o3/2o *b3/2x3/2*c - (contains "2tet")
x3x3/2o3/2o *b3/2o3/2*c - (contains "2tet")
x3o3/2x3/2o *b3/2o3/2*c - (contains "2tet")
x3o3/2o3/2x *b3/2o3/2*c - (contains "2pen")
x3o3/2o3/2o *b3/2x3/2*c - (contains "2tet")
o3x3/2x3/2o *b3/2o3/2*c - [Grünbaumian]
o3x3/2o3/2x *b3/2o3/2*c - (contains "2tet")
o3x3/2o3/2o *b3/2x3/2*c - [Grünbaumian]
o3o3/2x3/2x *b3/2o3/2*c - [Grünbaumian]
o3o3/2x3/2o *b3/2x3/2*c - [Grünbaumian]
o3o3/2o3/2x *b3/2x3/2*c - (contains "2tet")
x3x3/2x3/2o *b3/2o3/2*c - [Grünbaumian]
x3x3/2o3/2x *b3/2o3/2*c - (contains "2tet")
x3x3/2o3/2o *b3/2x3/2*c - [Grünbaumian]
x3o3/2x3/2x *b3/2o3/2*c - [Grünbaumian]
x3o3/2x3/2o *b3/2x3/2*c - [Grünbaumian]
x3o3/2o3/2x *b3/2x3/2*c - (contains "2tet")
o3x3/2x3/2x *b3/2o3/2*c - [Grünbaumian]
o3x3/2x3/2o *b3/2x3/2*c - [Grünbaumian]
o3x3/2o3/2x *b3/2x3/2*c - [Grünbaumian]
o3o3/2x3/2x *b3/2x3/2*c - [Grünbaumian]
x3x3/2x3/2x *b3/2o3/2*c - [Grünbaumian]
x3x3/2x3/2o *b3/2x3/2*c - [Grünbaumian]
x3x3/2o3/2x *b3/2x3/2*c - [Grünbaumian]
x3o3/2x3/2x *b3/2x3/2*c - [Grünbaumian]
o3x3/2x3/2x *b3/2x3/2*c - [Grünbaumian]
x3x3/2x3/2x *b3/2x3/2*c - [Grünbaumian]
|
x3/2o3/2o3/2o *b3/2o3/2*c - (contains "2pen")
o3/2x3/2o3/2o *b3/2o3/2*c - (contains "2tet")
o3/2o3/2o3/2o *b3/2x3/2*c - (contains "2tet")
x3/2x3/2o3/2o *b3/2o3/2*c - [Grünbaumian]
x3/2o3/2x3/2o *b3/2o3/2*c - (contains "2tet")
x3/2o3/2o3/2x *b3/2o3/2*c - (contains "2pen")
x3/2o3/2o3/2o *b3/2x3/2*c - (contains "2tet")
o3/2x3/2x3/2o *b3/2o3/2*c - [Grünbaumian]
o3/2x3/2o3/2o *b3/2x3/2*c - [Grünbaumian]
x3/2x3/2x3/2o *b3/2o3/2*c - [Grünbaumian]
x3/2x3/2o3/2x *b3/2o3/2*c - [Grünbaumian]
x3/2x3/2o3/2o *b3/2x3/2*c - [Grünbaumian]
x3/2o3/2x3/2o *b3/2x3/2*c - [Grünbaumian]
x3/2o3/2o3/2x *b3/2x3/2*c - (contains "2tet")
o3/2x3/2x3/2o *b3/2x3/2*c - [Grünbaumian]
x3/2x3/2x3/2x *b3/2o3/2*c - [Grünbaumian]
x3/2x3/2x3/2o *b3/2x3/2*c - [Grünbaumian]
x3/2x3/2o3/2x *b3/2x3/2*c - [Grünbaumian]
x3/2x3/2x3/2x *b3/2x3/2*c - [Grünbaumian]
|
|
Penteractic Symmetries – type o3o3o4o *b3o3/2*d (up)
x3o3o4o *b3o3/2*c - (contains "2pen")
o3x3o4o *b3o3/2*c - (contains "2tet")
o3o3x4o *b3o3/2*c - (contains "2tet")
o3o3o4x *b3o3/2*c - (contains "2tes")
o3o3o4o *b3x3/2*c - (contains "2tet")
x3x3o4o *b3o3/2*c - (contains "2tet")
x3o3x4o *b3o3/2*c - (contains "2tet")
x3o3o4x *b3o3/2*c - (contains "2pen")
x3o3o4o *b3x3/2*c - (contains "2tet")
o3x3x4o *b3o3/2*c - ribrant
o3x3o4x *b3o3/2*c - (contains "2tet")
o3x3o4o *b3x3/2*c - (contains "2oh")
o3o3x4x *b3o3/2*c - (contains "2tet")
o3o3x4o *b3x3/2*c - [Grünbaumian]
o3o3o4x *b3x3/2*c - (contains "2tet")
x3x3x4o *b3o3/2*c - roptit
x3x3o4x *b3o3/2*c - (contains "2tet")
x3x3o4o *b3x3/2*c - (contains "2oh")
x3o3x4x *b3o3/2*c - (contains "2tet")
x3o3x4o *b3x3/2*c - [Grünbaumian]
x3o3o4x *b3x3/2*c - (contains "2tet")
o3x3x4x *b3o3/2*c - sroptin
o3x3x4o *b3x3/2*c - [Grünbaumian]
o3x3o4x *b3x3/2*c - skovactaden
o3o3x4x *b3x3/2*c - [Grünbaumian]
x3x3x4x *b3o3/2*c - sircaptint
x3x3x4o *b3x3/2*c - [Grünbaumian]
x3x3o4x *b3x3/2*c - scadnicat
x3o3x4x *b3x3/2*c - [Grünbaumian]
o3x3x4x *b3x3/2*c - [Grünbaumian]
x3x3x4x *b3x3/2*c - [Grünbaumian]
|
x3o3o4/3o *b3o3/2*c - (contains "2pen")
o3x3o4/3o *b3o3/2*c - (contains "2tet")
o3o3x4/3o *b3o3/2*c - (contains "2tet")
o3o3o4/3x *b3o3/2*c - (contains "2tes")
o3o3o4/3o *b3x3/2*c - (contains "2tet")
x3x3o4/3o *b3o3/2*c - (contains "2tet")
x3o3x4/3o *b3o3/2*c - (contains "2tet")
x3o3o4/3x *b3o3/2*c - (contains "2pen")
x3o3o4/3o *b3x3/2*c - (contains "2tet")
o3x3x4/3o *b3o3/2*c - ribrant
o3x3o4/3x *b3o3/2*c - (contains "2tet")
o3x3o4/3o *b3x3/2*c - (contains "2oh")
o3o3x4/3x *b3o3/2*c - (contains "2tet")
o3o3x4/3o *b3x3/2*c - [Grünbaumian]
o3o3o4/3x *b3x3/2*c - (contains "2tet")
x3x3x4/3o *b3o3/2*c - roptit
x3x3o4/3x *b3o3/2*c - (contains "2tet")
x3x3o4/3o *b3x3/2*c - (contains "2oh")
x3o3x4/3x *b3o3/2*c - (contains "2tet")
x3o3x4/3o *b3x3/2*c - [Grünbaumian]
x3o3o4/3x *b3x3/2*c - (contains "2tet")
o3x3x4/3x *b3o3/2*c - groptin
o3x3x4/3o *b3x3/2*c - [Grünbaumian]
o3x3o4/3x *b3x3/2*c - gokvactaden
o3o3x4/3x *b3x3/2*c - [Grünbaumian]
x3x3x4/3x *b3o3/2*c - gircaptint
x3x3x4/3o *b3x3/2*c - [Grünbaumian]
x3x3o4/3x *b3x3/2*c - gacdincat
x3o3x4/3x *b3x3/2*c - [Grünbaumian]
o3x3x4/3x *b3x3/2*c - [Grünbaumian]
x3x3x4/3x *b3x3/2*c - [Grünbaumian]
|
x3/2o3o4o *b3o3/2*c - (contains "2pen")
o3/2x3o4o *b3o3/2*c - (contains "2tet")
o3/2o3x4o *b3o3/2*c - (contains "2tet")
o3/2o3o4x *b3o3/2*c - (contains "2tes")
o3/2o3o4o *b3x3/2*c - (contains "2tet")
x3/2x3o4o *b3o3/2*c - [Grünbaumian]
x3/2o3x4o *b3o3/2*c - (contains "2tet")
x3/2o3o4x *b3o3/2*c - (contains "2pen")
x3/2o3o4o *b3x3/2*c - (contains "2tet")
o3/2x3x4o *b3o3/2*c - ribrant
o3/2x3o4x *b3o3/2*c - (contains "2tet")
o3/2x3o4o *b3x3/2*c - (contains "2oh")
o3/2o3x4x *b3o3/2*c - (contains "2tet")
o3/2o3x4o *b3x3/2*c - [Grünbaumian]
o3/2o3o4x *b3x3/2*c - [Grünbaumian]
x3/2x3x4o *b3o3/2*c - [Grünbaumian]
x3/2x3o4x *b3o3/2*c - [Grünbaumian]
x3/2x3o4o *b3x3/2*c - [Grünbaumian]
x3/2o3x4x *b3o3/2*c - (contains "2tet")
x3/2o3x4o *b3x3/2*c - [Grünbaumian]
x3/2o3o4x *b3x3/2*c - (contains "2tet")
o3/2x3x4x *b3o3/2*c - sroptin
o3/2x3x4o *b3x3/2*c - [Grünbaumian]
o3/2x3o4x *b3x3/2*c - skovactaden
o3/2o3x4x *b3x3/2*c - [Grünbaumian]
x3/2x3x4x *b3o3/2*c - [Grünbaumian]
x3/2x3x4o *b3x3/2*c - [Grünbaumian]
x3/2x3o4x *b3x3/2*c - [Grünbaumian]
x3/2o3x4x *b3x3/2*c - [Grünbaumian]
o3/2x3x4x *b3x3/2*c - [Grünbaumian]
x3/2x3x4x *b3x3/2*c - [Grünbaumian]
|
x3/2o3o4/3o *b3o3/2*c - (contains "2pen")
o3/2x3o4/3o *b3o3/2*c - (contains "2tet")
o3/2o3x4/3o *b3o3/2*c - (contains "2tet")
o3/2o3o4/3x *b3o3/2*c - (contains "2tes")
o3/2o3o4/3o *b3x3/2*c - (contains "2tet")
x3/2x3o4/3o *b3o3/2*c - [Grünbaumian]
x3/2o3x4/3o *b3o3/2*c - (contains "2tet")
x3/2o3o4/3x *b3o3/2*c - (contains "2pen")
x3/2o3o4/3o *b3x3/2*c - (contains "2tet")
o3/2x3x4/3o *b3o3/2*c - ribrant
o3/2x3o4/3x *b3o3/2*c - (contains "2tet")
o3/2x3o4/3o *b3x3/2*c - (contains "2oh")
o3/2o3x4/3x *b3o3/2*c - (contains "2tet")
o3/2o3x4/3o *b3x3/2*c - [Grünbaumian]
o3/2o3o4/3x *b3x3/2*c - (contains "2tet")
x3/2x3x4/3o *b3o3/2*c - [Grünbaumian]
x3/2x3o4/3x *b3o3/2*c - [Grünbaumian]
x3/2x3o4/3o *b3x3/2*c - [Grünbaumian]
x3/2o3x4/3x *b3o3/2*c - (contains "2tet")
x3/2o3x4/3o *b3x3/2*c - [Grünbaumian]
x3/2o3o4/3x *b3x3/2*c - (contains "2tet")
o3/2x3x4/3x *b3o3/2*c - groptin
o3/2x3x4/3o *b3x3/2*c - [Grünbaumian]
o3/2x3o4/3x *b3x3/2*c - gokvactaden
o3/2o3x4/3x *b3x3/2*c - [Grünbaumian]
x3/2x3x4/3x *b3o3/2*c - [Grünbaumian]
x3/2x3x4/3o *b3x3/2*c - [Grünbaumian]
x3/2x3o4/3x *b3x3/2*c - [Grünbaumian]
x3/2o3x4/3x *b3x3/2*c - [Grünbaumian]
o3/2x3x4/3x *b3x3/2*c - [Grünbaumian]
x3/2x3x4/3x *b3x3/2*c - [Grünbaumian]
|
x3o3o4o *b3/2o3*c - (contains "2pen")
o3x3o4o *b3/2o3*c - (contains "2tet")
o3o3x4o *b3/2o3*c - (contains "2tet")
o3o3o4x *b3/2o3*c - (contains "2tes")
o3o3o4o *b3/2x3*c - (contains "2tet")
x3x3o4o *b3/2o3*c - (contains "2tet")
x3o3x4o *b3/2o3*c - (contains "2tet")
x3o3o4x *b3/2o3*c - (contains "2pen")
x3o3o4o *b3/2x3*c - (contains "2tet")
o3x3x4o *b3/2o3*c - ribrant
o3x3o4x *b3/2o3*c - (contains "2tet")
o3x3o4o *b3/2x3*c - [Grünbaumian]
o3o3x4x *b3/2o3*c - (contains "2tet")
o3o3x4o *b3/2x3*c - ript
o3o3o4x *b3/2x3*c - (contains "2tet")
x3x3x4o *b3/2o3*c - roptit
x3x3o4x *b3/2o3*c - (contains "2tet")
x3x3o4o *b3/2x3*c - [Grünbaumian]
x3o3x4x *b3/2o3*c - (contains "2tet")
x3o3x4o *b3/2x3*c - (contains "2thah")
x3o3o4x *b3/2x3*c - (contains "2tet")
o3x3x4x *b3/2o3*c - sroptin
o3x3x4o *b3/2x3*c - [Grünbaumian]
o3x3o4x *b3/2x3*c - [Grünbaumian]
o3o3x4x *b3/2x3*c - sorcpit
x3x3x4x *b3/2o3*c - sircaptint
x3x3x4o *b3/2x3*c - [Grünbaumian]
x3x3o4x *b3/2x3*c - [Grünbaumian]
x3o3x4x *b3/2x3*c - (contains "2thah")
o3x3x4x *b3/2x3*c - [Grünbaumian]
x3x3x4x *b3/2x3*c - [Grünbaumian]
|
x3o3o4/3o *b3/2o3*c - (contains "2pen")
o3x3o4/3o *b3/2o3*c - (contains "2tet")
o3o3x4/3o *b3/2o3*c - (contains "2tet")
o3o3o4/3x *b3/2o3*c - (contains "2tes")
o3o3o4/3o *b3/2x3*c - (contains "2tet")
x3x3o4/3o *b3/2o3*c - (contains "2tet")
x3o3x4/3o *b3/2o3*c - (contains "2tet")
x3o3o4/3x *b3/2o3*c - (contains "2pen")
x3o3o4/3o *b3/2x3*c - (contains "2tet")
o3x3x4/3o *b3/2o3*c - ribrant
o3x3o4/3x *b3/2o3*c - (contains "2tet")
o3x3o4/3o *b3/2x3*c - [Grünbaumian]
o3o3x4/3x *b3/2o3*c - (contains "2tet")
o3o3x4/3o *b3/2x3*c - ript
o3o3o4/3x *b3/2x3*c - (contains "2tet")
x3x3x4/3o *b3/2o3*c - roptit
x3x3o4/3x *b3/2o3*c - (contains "2tet")
x3x3o4/3o *b3/2x3*c - [Grünbaumian]
x3o3x4/3x *b3/2o3*c - (contains "2tet")
x3o3x4/3o *b3/2x3*c - (contains "2thah")
x3o3o4/3x *b3/2x3*c - (contains "2tet")
o3x3x4/3x *b3/2o3*c - groptin
o3x3x4/3o *b3/2x3*c - [Grünbaumian]
o3x3o4/3x *b3/2x3*c - [Grünbaumian]
o3o3x4/3x *b3/2x3*c - gorcpit
x3x3x4/3x *b3/2o3*c - gircaptint
x3x3x4/3o *b3/2x3*c - [Grünbaumian]
x3x3o4/3x *b3/2x3*c - [Grünbaumian]
x3o3x4/3x *b3/2x3*c - (contains "2thah")
o3x3x4/3x *b3/2x3*c - [Grünbaumian]
x3x3x4/3x *b3/2x3*c - [Grünbaumian]
|
x3/2o3o4o *b3/2o3*c - (contains "2pen")
o3/2x3o4o *b3/2o3*c - (contains "2tet")
o3/2o3x4o *b3/2o3*c - (contains "2tet")
o3/2o3o4x *b3/2o3*c - (contains "2tes")
o3/2o3o4o *b3/2x3*c - (contains "2tet")
x3/2x3o4o *b3/2o3*c - [Grünbaumian]
x3/2o3x4o *b3/2o3*c - (contains "2tet")
x3/2o3o4x *b3/2o3*c - (contains "2pen")
x3/2o3o4o *b3/2x3*c - (contains "2tet")
o3/2x3x4o *b3/2o3*c - ribrant
o3/2x3o4x *b3/2o3*c - (contains "2tet")
o3/2x3o4o *b3/2x3*c - [Grünbaumian]
o3/2o3x4x *b3/2o3*c - (contains "2tet")
o3/2o3x4o *b3/2x3*c - ript
o3/2o3o4x *b3/2x3*c - (contains "2tet")
x3/2x3x4o *b3/2o3*c - [Grünbaumian]
x3/2x3o4x *b3/2o3*c - [Grünbaumian]
x3/2x3o4o *b3/2x3*c - [Grünbaumian]
x3/2o3x4x *b3/2o3*c - (contains "2tet")
x3/2o3x4o *b3/2x3*c - (contains "2thah")
x3/2o3o4x *b3/2x3*c - (contains "2tet")
o3/2x3x4x *b3/2o3*c - sroptin
o3/2x3x4o *b3/2x3*c - [Grünbaumian]
o3/2x3o4x *b3/2x3*c - [Grünbaumian]
o3/2o3x4x *b3/2x3*c - sorcpit
x3/2x3x4x *b3/2o3*c - [Grünbaumian]
x3/2x3x4o *b3/2x3*c - [Grünbaumian]
x3/2x3o4x *b3/2x3*c - [Grünbaumian]
x3/2o3x4x *b3/2x3*c -
o3/2x3x4x *b3/2x3*c - [Grünbaumian]
x3/2x3x4x *b3/2x3*c - [Grünbaumian]
|
x3/2o3o4/3o *b3/2o3*c - (contains "2pen")
o3/2x3o4/3o *b3/2o3*c - (contains "2tet")
o3/2o3x4/3o *b3/2o3*c - (contains "2tet")
o3/2o3o4/3x *b3/2o3*c - (contains "2tes")
o3/2o3o4/3o *b3/2x3*c - (contains "2tet")
x3/2x3o4/3o *b3/2o3*c - [Grünbaumian]
x3/2o3x4/3o *b3/2o3*c - (contains "2tet")
x3/2o3o4/3x *b3/2o3*c - (contains "2pen")
x3/2o3o4/3o *b3/2x3*c - (contains "2tet")
o3/2x3x4/3o *b3/2o3*c - ribrant
o3/2x3o4/3x *b3/2o3*c - (contains "2tet")
o3/2x3o4/3o *b3/2x3*c - [Grünbaumian]
o3/2o3x4/3x *b3/2o3*c - (contains "2tet")
o3/2o3x4/3o *b3/2x3*c - ript
o3/2o3o4/3x *b3/2x3*c - (contains "2tet")
x3/2x3x4/3o *b3/2o3*c - [Grünbaumian]
x3/2x3o4/3x *b3/2o3*c - [Grünbaumian]
x3/2x3o4/3o *b3/2x3*c - [Grünbaumian]
x3/2o3x4/3x *b3/2o3*c - (contains "2tet")
x3/2o3x4/3o *b3/2x3*c - (contains "2thah")
x3/2o3o4/3x *b3/2x3*c - (contains "2tet")
o3/2x3x4/3x *b3/2o3*c - groptin
o3/2x3x4/3o *b3/2x3*c - [Grünbaumian]
o3/2x3o4/3x *b3/2x3*c - [Grünbaumian]
o3/2o3x4/3x *b3/2x3*c - gorcpit
x3/2x3x4/3x *b3/2o3*c - [Grünbaumian]
x3/2x3x4/3o *b3/2x3*c - [Grünbaumian]
x3/2x3o4/3x *b3/2x3*c - [Grünbaumian]
x3/2o3x4/3x *b3/2x3*c -
o3/2x3x4/3x *b3/2x3*c - [Grünbaumian]
x3/2x3x4/3x *b3/2x3*c - [Grünbaumian]
|
x3o3/2o4o *b3o3*c - (contains "2pen")
o3x3/2o4o *b3o3*c - (contains "2tet")
o3o3/2x4o *b3o3*c - (contains "2tet")
o3o3/2o4x *b3o3*c - (contains "2tes")
o3o3/2o4o *b3x3*c - (contains "2tet")
x3x3/2o4o *b3o3*c - (contains "2tet")
x3o3/2x4o *b3o3*c - (contains "2tet")
x3o3/2o4x *b3o3*c - (contains "2pen")
x3o3/2o4o *b3x3*c - (contains "2tet")
o3x3/2x4o *b3o3*c - [Grünbaumian]
o3x3/2o4x *b3o3*c - (contains "2tet")
o3x3/2o4o *b3x3*c - (contains "2oh")
o3o3/2x4x *b3o3*c - (contains "2tet")
o3o3/2x4o *b3x3*c - ript
o3o3/2o4x *b3x3*c - (contains "2tet")
x3x3/2x4o *b3o3*c - [Grünbaumian]
x3x3/2o4x *b3o3*c - (contains "2tet")
x3x3/2o4o *b3x3*c - (contains "2oh")
x3o3/2x4x *b3o3*c - (contains "2tet")
x3o3/2x4o *b3x3*c - (contains "2thah")
x3o3/2o4x *b3x3*c - (contains "2tet")
o3x3/2x4x *b3o3*c - [Grünbaumian]
o3x3/2x4o *b3x3*c - [Grünbaumian]
o3x3/2o4x *b3x3*c - gokvactaden
o3o3/2x4x *b3x3*c - sorcpit
x3x3/2x4x *b3o3*c - [Grünbaumian]
x3x3/2x4o *b3x3*c - [Grünbaumian]
x3x3/2o4x *b3x3*c - gacdincat
x3o3/2x4x *b3x3*c - (contains "2thah")
o3x3/2x4x *b3x3*c - [Grünbaumian]
x3x3/2x4x *b3x3*c - [Grünbaumian]
|
x3o3/2o4/3o *b3o3*c - (contains "2pen")
o3x3/2o4/3o *b3o3*c - (contains "2tet")
o3o3/2x4/3o *b3o3*c - (contains "2tet")
o3o3/2o4/3x *b3o3*c - (contains "2tes")
o3o3/2o4/3o *b3x3*c - (contains "2tet")
x3x3/2o4/3o *b3o3*c - (contains "2tet")
x3o3/2x4/3o *b3o3*c - (contains "2tet")
x3o3/2o4/3x *b3o3*c - (contains "2pen")
x3o3/2o4/3o *b3x3*c - (contains "2tet")
o3x3/2x4/3o *b3o3*c - [Grünbaumian]
o3x3/2o4/3x *b3o3*c - (contains "2tet")
o3x3/2o4/3o *b3x3*c - (contains "2oh")
o3o3/2x4/3x *b3o3*c - (contains "2tet")
o3o3/2x4/3o *b3x3*c - ript
o3o3/2o4/3x *b3x3*c - (contains "2tet")
x3x3/2x4/3o *b3o3*c - [Grünbaumian]
x3x3/2o4/3x *b3o3*c - (contains "2tet")
x3x3/2o4/3o *b3x3*c - (contains "2oh")
x3o3/2x4/3x *b3o3*c - (contains "2tet")
x3o3/2x4/3o *b3x3*c - (contains "2thah")
x3o3/2o4/3x *b3x3*c - (contains "2tet")
o3x3/2x4/3x *b3o3*c - [Grünbaumian]
o3x3/2x4/3o *b3x3*c - [Grünbaumian]
o3x3/2o4/3x *b3x3*c - skovactaden
o3o3/2x4/3x *b3x3*c - gorcpit
x3x3/2x4/3x *b3o3*c - [Grünbaumian]
x3x3/2x4/3o *b3x3*c - [Grünbaumian]
x3x3/2o4/3x *b3x3*c - scadnicat
x3o3/2x4/3x *b3x3*c - (contains "2thah")
o3x3/2x4/3x *b3x3*c - [Grünbaumian]
x3x3/2x4/3x *b3x3*c - [Grünbaumian]
|
x3/2o3/2o4o *b3o3*c - (contains "2pen")
o3/2x3/2o4o *b3o3*c - (contains "2tet")
o3/2o3/2x4o *b3o3*c - (contains "2tet")
o3/2o3/2o4x *b3o3*c - (contains "2tes")
o3/2o3/2o4o *b3x3*c - (contains "2tet")
x3/2x3/2o4o *b3o3*c - [Grünbaumian]
x3/2o3/2x4o *b3o3*c - (contains "2tet")
x3/2o3/2o4x *b3o3*c - (contains "2pen")
x3/2o3/2o4o *b3x3*c - (contains "2tet")
o3/2x3/2x4o *b3o3*c - [Grünbaumian]
o3/2x3/2o4x *b3o3*c - (contains "2tet")
o3/2x3/2o4o *b3x3*c - (contains "2oh")
o3/2o3/2x4x *b3o3*c - (contains "2tet")
o3/2o3/2x4o *b3x3*c - ript
o3/2o3/2o4x *b3x3*c - (contains "2tet")
x3/2x3/2x4o *b3o3*c - [Grünbaumian]
x3/2x3/2o4x *b3o3*c - [Grünbaumian]
x3/2x3/2o4o *b3x3*c - [Grünbaumian]
x3/2o3/2x4x *b3o3*c - (contains "2tet")
x3/2o3/2x4o *b3x3*c - (contains "2thah")
x3/2o3/2o4x *b3x3*c - (contains "2tet")
o3/2x3/2x4x *b3o3*c - [Grünbaumian]
o3/2x3/2x4o *b3x3*c - [Grünbaumian]
o3/2x3/2o4x *b3x3*c - gokvactaden
o3/2o3/2x4x *b3x3*c - sorcpit
x3/2x3/2x4x *b3o3*c - [Grünbaumian]
x3/2x3/2x4o *b3x3*c - [Grünbaumian]
x3/2x3/2o4x *b3x3*c - [Grünbaumian]
x3/2o3/2x4x *b3x3*c - (contains "2thah")
o3/2x3/2x4x *b3x3*c - [Grünbaumian]
x3/2x3/2x4x *b3x3*c - [Grünbaumian]
|
x3/2o3/2o4/3o *b3o3*c - (contains "2pen")
o3/2x3/2o4/3o *b3o3*c - (contains "2tet")
o3/2o3/2x4/3o *b3o3*c - (contains "2tet")
o3/2o3/2o4/3x *b3o3*c - (contains "2tes")
o3/2o3/2o4/3o *b3x3*c - (contains "2tet")
x3/2x3/2o4/3o *b3o3*c - [Grünbaumian]
x3/2o3/2x4/3o *b3o3*c - (contains "2tet")
x3/2o3/2o4/3x *b3o3*c - (contains "2pen")
x3/2o3/2o4/3o *b3x3*c - (contains "2tet")
o3/2x3/2x4/3o *b3o3*c - [Grünbaumian]
o3/2x3/2o4/3x *b3o3*c - (contains "2tet")
o3/2x3/2o4/3o *b3x3*c - (contains "2oh")
o3/2o3/2x4/3x *b3o3*c - (contains "2tet")
o3/2o3/2x4/3o *b3x3*c - ript
o3/2o3/2o4/3x *b3x3*c - (contains "2tet")
x3/2x3/2x4/3o *b3o3*c - [Grünbaumian]
x3/2x3/2o4/3x *b3o3*c - [Grünbaumian]
x3/2x3/2o4/3o *b3x3*c - [Grünbaumian]
x3/2o3/2x4/3x *b3o3*c - (contains "2tet")
x3/2o3/2x4/3o *b3x3*c - (contains "2thah")
x3/2o3/2o4/3x *b3x3*c - (contains "2tet")
o3/2x3/2x4/3x *b3o3*c - [Grünbaumian]
o3/2x3/2x4/3o *b3x3*c - [Grünbaumian]
o3/2x3/2o4/3x *b3x3*c - skovactaden
o3/2o3/2x4/3x *b3x3*c - gorcpit
x3/2x3/2x4/3x *b3o3*c - [Grünbaumian]
x3/2x3/2x4/3o *b3x3*c - [Grünbaumian]
x3/2x3/2o4/3x *b3x3*c - [Grünbaumian]
x3/2o3/2x4/3x *b3x3*c - (contains "2thah")
o3/2x3/2x4/3x *b3x3*c - [Grünbaumian]
x3/2x3/2x4/3x *b3x3*c - [Grünbaumian]
|
x3o3/2o4o *b3/2o3/2*c - (contains "2pen")
o3x3/2o4o *b3/2o3/2*c - (contains "2tet")
o3o3/2x4o *b3/2o3/2*c - (contains "2tet")
o3o3/2o4x *b3/2o3/2*c - (contains "2tes")
o3o3/2o4o *b3/2x3/2*c - (contains "2tet")
x3x3/2o4o *b3/2o3/2*c - (contains "2tet")
x3o3/2x4o *b3/2o3/2*c - (contains "2tet")
x3o3/2o4x *b3/2o3/2*c - (contains "2pen")
x3o3/2o4o *b3/2x3/2*c - (contains "2tet")
o3x3/2x4o *b3/2o3/2*c - [Grünbaumian]
o3x3/2o4x *b3/2o3/2*c - (contains "2tet")
o3x3/2o4o *b3/2x3/2*c - [Grünbaumian]
o3o3/2x4x *b3/2o3/2*c - (contains "2tet")
o3o3/2x4o *b3/2x3/2*c - [Grünbaumian]
o3o3/2o4x *b3/2x3/2*c - (contains "2tet")
x3x3/2x4o *b3/2o3/2*c - [Grünbaumian]
x3x3/2o4x *b3/2o3/2*c - (contains "2tet")
x3x3/2o4o *b3/2x3/2*c - [Grünbaumian]
x3o3/2x4x *b3/2o3/2*c - (contains "2tet")
x3o3/2x4o *b3/2x3/2*c - [Grünbaumian]
x3o3/2o4x *b3/2x3/2*c - (contains "2tet")
o3x3/2x4x *b3/2o3/2*c - [Grünbaumian]
o3x3/2x4o *b3/2x3/2*c - [Grünbaumian]
o3x3/2o4x *b3/2x3/2*c - [Grünbaumian]
o3o3/2x4x *b3/2x3/2*c - [Grünbaumian]
x3x3/2x4x *b3/2o3/2*c - [Grünbaumian]
x3x3/2x4o *b3/2x3/2*c - [Grünbaumian]
x3x3/2o4x *b3/2x3/2*c - [Grünbaumian]
x3o3/2x4x *b3/2x3/2*c - [Grünbaumian]
o3x3/2x4x *b3/2x3/2*c - [Grünbaumian]
x3x3/2x4x *b3/2x3/2*c - [Grünbaumian]
|
x3o3/2o4/3o *b3/2o3/2*c - (contains "2pen")
o3x3/2o4/3o *b3/2o3/2*c - (contains "2tet")
o3o3/2x4/3o *b3/2o3/2*c - (contains "2tet")
o3o3/2o4/3x *b3/2o3/2*c - (contains "2tes")
o3o3/2o4/3o *b3/2x3/2*c - (contains "2tet")
x3x3/2o4/3o *b3/2o3/2*c - (contains "2tet")
x3o3/2x4/3o *b3/2o3/2*c - (contains "2tet")
x3o3/2o4/3x *b3/2o3/2*c - (contains "2pen")
x3o3/2o4/3o *b3/2x3/2*c - (contains "2tet")
o3x3/2x4/3o *b3/2o3/2*c - [Grünbaumian]
o3x3/2o4/3x *b3/2o3/2*c - (contains "2tet")
o3x3/2o4/3o *b3/2x3/2*c - [Grünbaumian]
o3o3/2x4/3x *b3/2o3/2*c - (contains "2tet")
o3o3/2x4/3o *b3/2x3/2*c - [Grünbaumian]
o3o3/2o4/3x *b3/2x3/2*c - (contains "2tet")
x3x3/2x4/3o *b3/2o3/2*c - [Grünbaumian]
x3x3/2o4/3x *b3/2o3/2*c - (contains "2tet")
x3x3/2o4/3o *b3/2x3/2*c - [Grünbaumian]
x3o3/2x4/3x *b3/2o3/2*c - (contains "2tet")
x3o3/2x4/3o *b3/2x3/2*c - [Grünbaumian]
x3o3/2o4/3x *b3/2x3/2*c - (contains "2tet")
o3x3/2x4/3x *b3/2o3/2*c - [Grünbaumian]
o3x3/2x4/3o *b3/2x3/2*c - [Grünbaumian]
o3x3/2o4/3x *b3/2x3/2*c - [Grünbaumian]
o3o3/2x4/3x *b3/2x3/2*c - [Grünbaumian]
x3x3/2x4/3x *b3/2o3/2*c - [Grünbaumian]
x3x3/2x4/3o *b3/2x3/2*c - [Grünbaumian]
x3x3/2o4/3x *b3/2x3/2*c - [Grünbaumian]
x3o3/2x4/3x *b3/2x3/2*c - [Grünbaumian]
o3x3/2x4/3x *b3/2x3/2*c - [Grünbaumian]
x3x3/2x4/3x *b3/2x3/2*c - [Grünbaumian]
|
x3/2o3/2o4o *b3/2o3/2*c - (contains "2pen")
o3/2x3/2o4o *b3/2o3/2*c - (contains "2tet")
o3/2o3/2x4o *b3/2o3/2*c - (contains "2tet")
o3/2o3/2o4x *b3/2o3/2*c - (contains "2tes")
o3/2o3/2o4o *b3/2x3/2*c - (contains "2tet")
x3/2x3/2o4o *b3/2o3/2*c - [Grünbaumian]
x3/2o3/2x4o *b3/2o3/2*c - (contains "2tet")
x3/2o3/2o4x *b3/2o3/2*c - (contains "2pen")
x3/2o3/2o4o *b3/2x3/2*c - (contains "2tet")
o3/2x3/2x4o *b3/2o3/2*c - [Grünbaumian]
o3/2x3/2o4x *b3/2o3/2*c - (contains "2tet")
o3/2x3/2o4o *b3/2x3/2*c - [Grünbaumian]
o3/2o3/2x4x *b3/2o3/2*c - (contains "2tet")
o3/2o3/2x4o *b3/2x3/2*c - [Grünbaumian]
o3/2o3/2o4x *b3/2x3/2*c - (contains "2tet")
x3/2x3/2x4o *b3/2o3/2*c - [Grünbaumian]
x3/2x3/2o4x *b3/2o3/2*c - [Grünbaumian]
x3/2x3/2o4o *b3/2x3/2*c - [Grünbaumian]
x3/2o3/2x4x *b3/2o3/2*c - (contains "2tet")
x3/2o3/2x4o *b3/2x3/2*c - [Grünbaumian]
x3/2o3/2o4x *b3/2x3/2*c - (contains "2tet")
o3/2x3/2x4x *b3/2o3/2*c - [Grünbaumian]
o3/2x3/2x4o *b3/2x3/2*c - [Grünbaumian]
o3/2x3/2o4x *b3/2x3/2*c - [Grünbaumian]
o3/2o3/2x4x *b3/2x3/2*c - [Grünbaumian]
x3/2x3/2x4x *b3/2o3/2*c - [Grünbaumian]
x3/2x3/2x4o *b3/2x3/2*c - [Grünbaumian]
x3/2x3/2o4x *b3/2x3/2*c - [Grünbaumian]
x3/2o3/2x4x *b3/2x3/2*c - [Grünbaumian]
o3/2x3/2x4x *b3/2x3/2*c - [Grünbaumian]
x3/2x3/2x4x *b3/2x3/2*c - [Grünbaumian]
|
x3/2o3/2o4/3o *b3/2o3/2*c - (contains "2pen")
o3/2x3/2o4/3o *b3/2o3/2*c - (contains "2tet")
o3/2o3/2x4/3o *b3/2o3/2*c - (contains "2tet")
o3/2o3/2o4/3x *b3/2o3/2*c - (contains "2tes")
o3/2o3/2o4/3o *b3/2x3/2*c - (contains "2tet")
x3/2x3/2o4/3o *b3/2o3/2*c - [Grünbaumian]
x3/2o3/2x4/3o *b3/2o3/2*c - (contains "2tet")
x3/2o3/2o4/3x *b3/2o3/2*c - (contains "2pen")
x3/2o3/2o4/3o *b3/2x3/2*c - (contains "2tet")
o3/2x3/2x4/3o *b3/2o3/2*c - [Grünbaumian]
o3/2x3/2o4/3x *b3/2o3/2*c - (contains "2tet")
o3/2x3/2o4/3o *b3/2x3/2*c - [Grünbaumian]
o3/2o3/2x4/3x *b3/2o3/2*c - (contains "2tet")
o3/2o3/2x4/3o *b3/2x3/2*c - [Grünbaumian]
o3/2o3/2o4/3x *b3/2x3/2*c - (contains "2tet")
x3/2x3/2x4/3o *b3/2o3/2*c - [Grünbaumian]
x3/2x3/2o4/3x *b3/2o3/2*c - [Grünbaumian]
x3/2x3/2o4/3o *b3/2x3/2*c - [Grünbaumian]
x3/2o3/2x4/3x *b3/2o3/2*c - (contains "2tet")
x3/2o3/2x4/3o *b3/2x3/2*c - [Grünbaumian]
x3/2o3/2o4/3x *b3/2x3/2*c - (contains "2tet")
o3/2x3/2x4/3x *b3/2o3/2*c - [Grünbaumian]
o3/2x3/2x4/3o *b3/2x3/2*c - [Grünbaumian]
o3/2x3/2o4/3x *b3/2x3/2*c - [Grünbaumian]
o3/2o3/2x4/3x *b3/2x3/2*c - [Grünbaumian]
x3/2x3/2x4/3x *b3/2o3/2*c - [Grünbaumian]
x3/2x3/2x4/3o *b3/2x3/2*c - [Grünbaumian]
x3/2x3/2o4/3x *b3/2x3/2*c - [Grünbaumian]
x3/2o3/2x4/3x *b3/2x3/2*c - [Grünbaumian]
o3/2x3/2x4/3x *b3/2x3/2*c - [Grünbaumian]
x3/2x3/2x4/3x *b3/2x3/2*c - [Grünbaumian]
|
Penteractic Symmetries – type o3o3o3o *b4o4/3*d (up)
x3o3o3o *b4o4/3*c - (contains "hex+8oct")
o3x3o3o *b4o4/3*c - (contains "oct+6{4}")
o3o3x3o *b4o4/3*c - (contains "oct+6{4}")
o3o3o3x *b4o4/3*c - (contains "hex+8oct")
o3o3o3o *b4x4/3*c - (contains "2cube")
x3x3o3o *b4o4/3*c - (contains "oct+6{4}")
x3o3x3o *b4o4/3*c - (contains "oct+6{4}")
x3o3o3x *b4o4/3*c - (contains "hex+8oct")
x3o3o3o *b4x4/3*c - (contains "2cube")
o3x3x3o *b4o4/3*c - (contains "2cho")
o3x3o3x *b4o4/3*c - (contains "oct+6{4}")
o3x3o3o *b4x4/3*c - sirpin
o3o3x3x *b4o4/3*c - (contains "oct+6{4}")
o3o3x3o *b4x4/3*c - fawdint
o3o3o3x *b4x4/3*c - (contains "2cube")
x3x3x3o *b4o4/3*c - (contains "2cho")
x3x3o3x *b4o4/3*c - (contains "oct+6{4}")
x3x3o3o *b4x4/3*c - setitdin
x3o3x3x *b4o4/3*c - (contains "oct+6{4}")
x3o3x3o *b4x4/3*c - gikvacadint
x3o3o3x *b4x4/3*c - (contains "2cube")
o3x3x3x *b4o4/3*c - (contains "2cho")
o3x3x3o *b4x4/3*c - danbitot
o3x3o3x *b4x4/3*c - sikvacadint
o3o3x3x *b4x4/3*c - getitdin
x3x3x3x *b4o4/3*c - (contains "2cho")
x3x3x3o *b4x4/3*c - gadinnert
x3x3o3x *b4x4/3*c - sidacadint
x3o3x3x *b4x4/3*c - gidacadint
o3x3x3x *b4x4/3*c - sadinnert
x3x3x3x *b4x4/3*c - danpit
|
x3o3o3/2o *b4o4/3*c - (contains "hex+8oct")
o3x3o3/2o *b4o4/3*c - (contains "oct+6{4}")
o3o3x3/2o *b4o4/3*c - (contains "oct+6{4}")
o3o3o3/2x *b4o4/3*c - (contains "hex+8oct")
o3o3o3/2o *b4x4/3*c - (contains "2cube")
x3x3o3/2o *b4o4/3*c - (contains "oct+6{4}")
x3o3x3/2o *b4o4/3*c - (contains "oct+6{4}")
x3o3o3/2x *b4o4/3*c - (contains "2firp")
x3o3o3/2o *b4x4/3*c - (contains "2cube")
o3x3x3/2o *b4o4/3*c - (contains "2cho")
o3x3o3/2x *b4o4/3*c - (contains "2thah")
o3x3o3/2o *b4x4/3*c - sirpin
o3o3x3/2x *b4o4/3*c - [Grünbaumian]
o3o3x3/2o *b4x4/3*c - fawdint
o3o3o3/2x *b4x4/3*c - (contains "2cube")
x3x3x3/2o *b4o4/3*c - (contains "2cho")
x3x3o3/2x *b4o4/3*c - (contains "2thah")
x3x3o3/2o *b4x4/3*c - setitdin
x3o3x3/2x *b4o4/3*c - [Grünbaumian]
x3o3x3/2o *b4x4/3*c - gikvacadint
x3o3o3/2x *b4x4/3*c - (contains "2cube")
o3x3x3/2x *b4o4/3*c - [Grünbaumian]
o3x3x3/2o *b4x4/3*c - danbitot
o3x3o3/2x *b4x4/3*c - (contains "2thah")
o3o3x3/2x *b4x4/3*c - [Grünbaumian]
x3x3x3/2x *b4o4/3*c - (contains "2cho")
x3x3x3/2o *b4x4/3*c - gadinnert
x3x3o3/2x *b4x4/3*c - (contains "2thah")
x3o3x3/2x *b4x4/3*c - [Grünbaumian]
o3x3x3/2x *b4x4/3*c - [Grünbaumian]
x3x3x3/2x *b4x4/3*c - [Grünbaumian]
|
x3/2o3o3o *b4o4/3*c - (contains "hex+8oct")
o3/2x3o3o *b4o4/3*c - (contains "oct+6{4}")
o3/2o3x3o *b4o4/3*c - (contains "oct+6{4}")
o3/2o3o3x *b4o4/3*c - (contains "hex+8oct")
o3/2o3o3o *b4x4/3*c - (contains "2cube")
x3/2x3o3o *b4o4/3*c - [Grünbaumian]
x3/2o3x3o *b4o4/3*c - (contains "2thah")
x3/2o3o3x *b4o4/3*c - (contains "2firp")
x3/2o3o3o *b4x4/3*c - (contains "2cube")
o3/2x3x3o *b4o4/3*c - (contains "2cho")
o3/2x3o3x *b4o4/3*c - (contains "oct+6{4}")
o3/2x3o3o *b4x4/3*c - sirpin
o3/2o3x3x *b4o4/3*c - (contains "oct+6{4}")
o3/2o3x3o *b4x4/3*c - fawdint
o3/2o3o3x *b4x4/3*c - (contains "2cube")
x3/2x3x3o *b4o4/3*c - [Grünbaumian]
x3/2x3o3x *b4o4/3*c - [Grünbaumian]
x3/2x3o3o *b4x4/3*c - [Grünbaumian]
x3/2o3x3x *b4o4/3*c - (contains "2thah")
x3/2o3x3o *b4x4/3*c - (contains "2thah")
x3/2o3o3x *b4x4/3*c - (contains "2cube")
o3/2x3x3x *b4o4/3*c - (contains "2cho")
o3/2x3x3o *b4x4/3*c - danbitot
o3/2x3o3x *b4x4/3*c - sikvacadint
o3/2o3x3x *b4x4/3*c - getitdin
x3/2x3x3x *b4o4/3*c - [Grünbaumian]
x3/2x3x3o *b4x4/3*c - [Grünbaumian]
x3/2x3o3x *b4x4/3*c - [Grünbaumian]
x3/2o3x3x *b4x4/3*c - (contains "2thah")
o3/2x3x3x *b4x4/3*c - sadinnert
x3/2x3x3x *b4x4/3*c - [Grünbaumian]
|
x3/2o3o3/2o *b4o4/3*c - (contains "hex+8oct")
o3/2x3o3/2o *b4o4/3*c - (contains "oct+6{4}")
o3/2o3x3/2o *b4o4/3*c - (contains "oct+6{4}")
o3/2o3o3/2x *b4o4/3*c - (contains "hex+8oct")
o3/2o3o3/2o *b4x4/3*c - (contains "2cube")
x3/2x3o3/2o *b4o4/3*c - [Grünbaumian]
x3/2o3x3/2o *b4o4/3*c - (contains "2thah")
x3/2o3o3/2x *b4o4/3*c - (contains "hex+8oct")
x3/2o3o3/2o *b4x4/3*c - (contains "2cube")
o3/2x3x3/2o *b4o4/3*c - (contains "2cho")
o3/2x3o3/2x *b4o4/3*c - (contains "2thah")
o3/2x3o3/2o *b4x4/3*c - sirpin
o3/2o3x3/2x *b4o4/3*c - [Grünbaumian]
o3/2o3x3/2o *b4x4/3*c - fawdint
o3/2o3o3/2x *b4x4/3*c - (contains "2cube")
x3/2x3x3/2o *b4o4/3*c - [Grünbaumian]
x3/2x3o3/2x *b4o4/3*c - [Grünbaumian]
x3/2x3o3/2o *b4x4/3*c - [Grünbaumian]
x3/2o3x3/2x *b4o4/3*c - [Grünbaumian]
x3/2o3x3/2o *b4x4/3*c - (contains "2thah")
x3/2o3o3/2x *b4x4/3*c - (contains "2cube")
o3/2x3x3/2x *b4o4/3*c - [Grünbaumian]
o3/2x3x3/2o *b4x4/3*c - danbitot
o3/2x3o3/2x *b4x4/3*c - (contains "2thah")
o3/2o3x3/2x *b4x4/3*c - [Grünbaumian]
x3/2x3x3/2x *b4o4/3*c - [Grünbaumian]
x3/2x3x3/2o *b4x4/3*c - [Grünbaumian]
x3/2x3o3/2x *b4x4/3*c - [Grünbaumian]
x3/2o3x3/2x *b4x4/3*c - [Grünbaumian]
o3/2x3x3/2x *b4x4/3*c - [Grünbaumian]
x3/2x3x3/2x *b4x4/3*c - [Grünbaumian]
|
x3o3/2o3o *b4o4*c - (contains "hex+8oct")
o3x3/2o3o *b4o4*c - (contains "oct+6{4}")
o3o3/2o3o *b4x4*c - (contains "2cube")
x3x3/2o3o *b4o4*c - (contains "oct+6{4}")
x3o3/2x3o *b4o4*c - (contains "2thah")
x3o3/2o3x *b4o4*c - (contains "2firp")
x3o3/2o3o *b4x4*c - (contains "2cube")
o3x3/2x3o *b4o4*c - [Grünbaumian]
o3x3/2o3o *b4x4*c - sirpin
x3x3/2x3o *b4o4*c - [Grünbaumian]
x3x3/2o3x *b4o4*c - (contains "2thah")
x3x3/2o3o *b4x4*c - setitdin
x3o3/2x3o *b4x4*c - (contains "2thah")
x3o3/2o3x *b4x4*c - (contains "2cube")
o3x3/2x3o *b4x4*c - [Grünbaumian]
x3x3/2x3x *b4o4*c - [Grünbaumian]
x3x3/2x3o *b4x4*c - [Grünbaumian]
x3x3/2o3x *b4x4*c - (contains "2thah")
x3x3/2x3x *b4x4*c - [Grünbaumian]
|
x3o3/2o3/2o *b4o4*c - (contains "hex+8oct")
o3x3/2o3/2o *b4o4*c - (contains "oct+6{4}")
o3o3/2x3/2o *b4o4*c - (contains "oct+6{4}")
o3o3/2o3/2x *b4o4*c - (contains "hex+8oct")
o3o3/2o3/2o *b4x4*c - (contains "2cube")
x3x3/2o3/2o *b4o4*c - (contains "oct+6{4}")
x3o3/2x3/2o *b4o4*c - (contains "2thah")
x3o3/2o3/2x *b4o4*c - (contains "hex+8oct")
x3o3/2o3/2o *b4x4*c - (contains "2cube")
o3x3/2x3/2o *b4o4*c - [Grünbaumian]
o3x3/2o3/2x *b4o4*c - (contains "oct+6{4}")
o3x3/2o3/2o *b4x4*c - sirpin
o3o3/2x3/2x *b4o4*c - [Grünbaumian]
o3o3/2x3/2o *b4x4*c - sirpin
o3o3/2o3/2x *b4x4*c - (contains "2cube")
x3x3/2x3/2o *b4o4*c - [Grünbaumian]
x3x3/2o3/2x *b4o4*c - (contains "oct+6{4}")
x3x3/2o3/2o *b4x4*c - setitdin
x3o3/2x3/2x *b4o4*c - [Grünbaumian]
x3o3/2x3/2o *b4x4*c - (contains "2thah")
x3o3/2o3/2x *b4x4*c - (contains "2cube")
o3x3/2x3/2x *b4o4*c - [Grünbaumian]
o3x3/2x3/2o *b4x4*c - [Grünbaumian]
o3x3/2o3/2x *b4x4*c - sikvacadint
o3o3/2x3/2x *b4x4*c - [Grünbaumian]
x3x3/2x3/2x *b4o4*c - [Grünbaumian]
x3x3/2x3/2o *b4x4*c - [Grünbaumian]
x3x3/2o3/2x *b4x4*c - sidacadint
x3o3/2x3/2x *b4x4*c - [Grünbaumian]
o3x3/2x3/2x *b4x4*c - [Grünbaumian]
x3x3/2x3/2x *b4x4*c - [Grünbaumian]
|
x3/2o3/2o3/2o *b4o4*c - (contains "hex+8oct")
o3/2x3/2o3/2o *b4o4*c - (contains "oct+6{4}")
o3/2o3/2o3/2o *b4x4*c - (contains "2cube")
x3/2x3/2o3/2o *b4o4*c - [Grünbaumian]
x3/2o3/2x3/2o *b4o4*c - (contains "oct+6{4}")
x3/2o3/2o3/2x *b4o4*c - (contains "2firp")
x3/2o3/2o3/2o *b4x4*c - (contains "2cube")
o3/2x3/2x3/2o *b4o4*c - [Grünbaumian]
o3/2x3/2o3/2o *b4x4*c - sirpin
x3/2x3/2x3/2o *b4o4*c - [Grünbaumian]
x3/2x3/2o3/2x *b4o4*c - [Grünbaumian]
x3/2x3/2o3/2o *b4x4*c - [Grünbaumian]
x3/2o3/2x3/2o *b4x4*c - sikvacadint
x3/2o3/2o3/2x *b4x4*c - (contains "2cube")
o3/2x3/2x3/2o *b4x4*c - [Grünbaumian]
x3/2x3/2x3/2x *b4o4*c - [Grünbaumian]
x3/2x3/2x3/2o *b4x4*c - [Grünbaumian]
x3/2x3/2o3/2x *b4x4*c - [Grünbaumian]
x3/2x3/2x3/2x *b4x4*c - [Grünbaumian]
|
|
x3o3/2o3o *b4/3o4/3*c - (contains "hex+8oct")
o3x3/2o3o *b4/3o4/3*c - (contains "oct+6{4}")
o3o3/2o3o *b4/3x4/3*c - (contains "2cube")
x3x3/2o3o *b4/3o4/3*c - (contains "oct+6{4}")
x3o3/2x3o *b4/3o4/3*c - (contains "2thah")
x3o3/2o3x *b4/3o4/3*c - (contains "2firp")
x3o3/2o3o *b4/3x4/3*c - (contains "2cube")
o3x3/2x3o *b4/3o4/3*c - [Grünbaumian]
o3x3/2o3o *b4/3x4/3*c - fawdint
x3x3/2x3o *b4/3o4/3*c - [Grünbaumian]
x3x3/2o3x *b4/3o4/3*c - (contains "2thah")
x3x3/2o3o *b4/3x4/3*c - getitdin
x3o3/2x3o *b4/3x4/3*c - (contains "2thah")
x3o3/2o3x *b4/3x4/3*c - (contains "2cube")
o3x3/2x3o *b4/3x4/3*c - [Grünbaumian]
x3x3/2x3x *b4/3o4/3*c - [Grünbaumian]
x3x3/2x3o *b4/3x4/3*c - [Grünbaumian]
x3x3/2o3x *b4/3x4/3*c - (contains "2thah")
x3x3/2x3x *b4/3x4/3*c - [Grünbaumian]
|
x3o3/2o3/2o *b4/3o4/3*c - (contains "hex+8oct")
o3x3/2o3/2o *b4/3o4/3*c - (contains "oct+6{4}")
o3o3/2x3/2o *b4/3o4/3*c - (contains "oct+6{4}")
o3o3/2o3/2x *b4/3o4/3*c - (contains "hex+8oct")
o3o3/2o3/2o *b4/3x4/3*c - (contains "2cube")
x3x3/2o3/2o *b4/3o4/3*c - (contains "oct+6{4}")
x3o3/2x3/2o *b4/3o4/3*c - (contains "2thah")
x3o3/2o3/2x *b4/3o4/3*c - (contains "hex+8oct")
x3o3/2o3/2o *b4/3x4/3*c - (contains "2cube")
o3x3/2x3/2o *b4/3o4/3*c - [Grünbaumian]
o3x3/2o3/2x *b4/3o4/3*c - (contains "oct+6{4}")
o3x3/2o3/2o *b4/3x4/3*c - fawdint
o3o3/2x3/2x *b4/3o4/3*c - [Grünbaumian]
o3o3/2x3/2o *b4/3x4/3*c - fawdint
o3o3/2o3/2x *b4/3x4/3*c - (contains "2cube")
x3x3/2x3/2o *b4/3o4/3*c - [Grünbaumian]
x3x3/2o3/2x *b4/3o4/3*c - (contains "oct+6{4}")
x3x3/2o3/2o *b4/3x4/3*c - getitdin
x3o3/2x3/2x *b4/3o4/3*c - [Grünbaumian]
x3o3/2x3/2o *b4/3x4/3*c - (contains "2thah")
x3o3/2o3/2x *b4/3x4/3*c - (contains "2cube")
o3x3/2x3/2x *b4/3o4/3*c - [Grünbaumian]
o3x3/2x3/2o *b4/3x4/3*c - [Grünbaumian]
o3x3/2o3/2x *b4/3x4/3*c - gikvacadint
o3o3/2x3/2x *b4/3x4/3*c - [Grünbaumian]
x3x3/2x3/2x *b4/3o4/3*c - [Grünbaumian]
x3x3/2x3/2o *b4/3x4/3*c - [Grünbaumian]
x3x3/2o3/2x *b4/3x4/3*c - gidacadint
x3o3/2x3/2x *b4/3x4/3*c - [Grünbaumian]
o3x3/2x3/2x *b4/3x4/3*c - [Grünbaumian]
x3x3/2x3/2x *b4/3x4/3*c - [Grünbaumian]
|
x3/2o3/2o3/2o *b4/3o4/3*c - (contains "hex+8oct")
o3/2x3/2o3/2o *b4/3o4/3*c - (contains "oct+6{4}")
o3/2o3/2o3/2o *b4/3x4/3*c - (contains "2cube")
x3/2x3/2o3/2o *b4/3o4/3*c - [Grünbaumian]
x3/2o3/2x3/2o *b4/3o4/3*c - (contains "oct+6{4}")
x3/2o3/2o3/2x *b4/3o4/3*c - (contains "2firp")
x3/2o3/2o3/2o *b4/3x4/3*c - (contains "2cube")
o3/2x3/2x3/2o *b4/3o4/3*c - [Grünbaumian]
o3/2x3/2o3/2o *b4/3x4/3*c - fawdint
x3/2x3/2x3/2o *b4/3o4/3*c - [Grünbaumian]
x3/2x3/2o3/2x *b4/3o4/3*c - [Grünbaumian]
x3/2x3/2o3/2o *b4/3x4/3*c - [Grünbaumian]
x3/2o3/2x3/2o *b4/3x4/3*c - gikvacadint
x3/2o3/2o3/2x *b4/3x4/3*c - (contains "2cube")
o3/2x3/2x3/2o *b4/3x4/3*c - [Grünbaumian]
x3/2x3/2x3/2x *b4/3o4/3*c - [Grünbaumian]
x3/2x3/2x3/2o *b4/3x4/3*c - [Grünbaumian]
x3/2x3/2o3/2x *b4/3x4/3*c - [Grünbaumian]
x3/2x3/2x3/2x *b4/3x4/3*c - [Grünbaumian]
|
|
o-P-o-Q-o-R-o-S-*b-T-o =
o_ _o
-P_ _Q- |
>o< | R
_T- -S_ |
o- -o
|
Within spherical space this type of Dynkin diagrams allows for P,Q,R,S,T all being either 3 or 3/2 only,
while the loop, when considered alone, allows for an odd amount of 3/2 only.
Demipenteractic Symmetries (up)
Clearly, if both the link marks of both legs as well as those of the loop, each together with those of the node decorations, provide an additional
symmetry of the diagram, then the resulting polyteron likewise will have a further symmetry.
Hence those polytera then will be re-found in the (full) penteractic symmetry as well.
x3o3o3o3/2*b3o - (contains "2pen")
o3x3o3o3/2*b3o - (contains "2tet")
o3o3x3o3/2*b3o - (contains "2tet")
o3o3o3x3/2*b3o - (contains "2tet")
x3x3o3o3/2*b3o - (contains "2tet")
x3o3x3o3/2*b3o - (contains "2tet")
x3o3o3x3/2*b3o - (contains "2tet")
x3o3o3o3/2*b3x - (contains "2pen")
o3x3x3o3/2*b3o - rawt
o3x3o3x3/2*b3o - [Grünbaumian]
o3o3x3x3/2*b3o - "2rinhit"
x3x3x3o3/2*b3o - ripthin
x3x3o3x3/2*b3o - [Grünbaumian]
x3x3o3o3/2*b3x - (contains "2tet")
x3o3x3x3/2*b3o - (contains "2thah")
x3o3x3o3/2*b3x - (contains "2tet")
x3o3o3x3/2*b3x - (contains "2tet")
o3x3x3x3/2*b3o - [Grünbaumian]
x3x3x3x3/2*b3o - [Grünbaumian]
x3x3x3o3/2*b3x - repirt
x3x3o3x3/2*b3x - [Grünbaumian]
x3o3x3x3/2*b3x - (contains "2thah")
x3x3x3x3/2*b3x - [Grünbaumian]
|
x3o3o3/2o3*b3o - (contains "2pen")
o3x3o3/2o3*b3o - (contains "2tet")
o3o3x3/2o3*b3o - (contains "2tet")
x3x3o3/2o3*b3o - (contains "2tet")
x3o3x3/2o3*b3o - (contains "2tet")
x3o3o3/2o3*b3x - (contains "2pen")
o3x3x3/2o3*b3o - rawt
o3o3x3/2x3*b3o - [Grünbaumian]
x3x3x3/2o3*b3o - ripthin
x3x3o3/2o3*b3x - (contains "2tet")
x3o3x3/2x3*b3o - [Grünbaumian]
x3o3x3/2o3*b3x - (contains "2tet")
o3x3x3/2x3*b3o - [Grünbaumian]
x3x3x3/2x3*b3o - [Grünbaumian]
x3x3x3/2o3*b3x - repirt
x3o3x3/2x3*b3x - [Grünbaumian]
x3x3x3/2x3*b3x - [Grünbaumian]
|
x3o3/2o3/2o3/2*b3o - (contains "2pen")
o3x3/2o3/2o3/2*b3o - (contains "2tet")
o3o3/2x3/2o3/2*b3o - (contains "2tet")
x3x3/2o3/2o3/2*b3o - (contains "2tet")
x3o3/2x3/2o3/2*b3o - (contains "2tet")
x3o3/2o3/2o3/2*b3x - (contains "2pen")
o3x3/2x3/2o3/2*b3o - [Grünbaumian]
o3o3/2x3/2x3/2*b3o - [Grünbaumian]
x3x3/2x3/2o3/2*b3o - [Grünbaumian]
x3x3/2o3/2o3/2*b3x - (contains "2tet")
x3o3/2x3/2x3/2*b3o - [Grünbaumian]
x3o3/2x3/2o3/2*b3x - (contains "2tet")
o3x3/2x3/2x3/2*b3o - [Grünbaumian]
x3x3/2x3/2x3/2*b3o - [Grünbaumian]
x3x3/2x3/2o3/2*b3x - [Grünbaumian]
x3o3/2x3/2x3/2*b3x - [Grünbaumian]
x3x3/2x3/2x3/2*b3x - [Grünbaumian]
|
x3o3o3o3/2*b3/2o - (contains "2pen")
o3x3o3o3/2*b3/2o - (contains "2tet")
o3o3x3o3/2*b3/2o - (contains "2tet")
o3o3o3x3/2*b3/2o - (contains "2tet")
o3o3o3o3/2*b3/2x - (contains "2pen")
x3x3o3o3/2*b3/2o - (contains "2tet")
x3o3x3o3/2*b3/2o - (contains "2tet")
x3o3o3x3/2*b3/2o - (contains "2tet")
x3o3o3o3/2*b3/2x - (contains "2pen")
o3x3x3o3/2*b3/2o - rawt
o3x3o3x3/2*b3/2o - [Grünbaumian]
o3x3o3o3/2*b3/2x - [Grünbaumian]
o3o3x3x3/2*b3/2o - "2rinhit"
o3o3x3o3/2*b3/2x - (contains "2tet")
o3o3o3x3/2*b3/2x - (contains "2tet")
x3x3x3o3/2*b3/2o - ripthin
x3x3o3x3/2*b3/2o - [Grünbaumian]
x3x3o3o3/2*b3/2x - [Grünbaumian]
x3o3x3x3/2*b3/2o - (contains "2thah")
x3o3x3o3/2*b3/2x - (contains "2tet")
x3o3o3x3/2*b3/2x - (contains "2tet")
o3x3x3x3/2*b3/2o - [Grünbaumian]
o3x3x3o3/2*b3/2x - [Grünbaumian]
o3x3o3x3/2*b3/2x - [Grünbaumian]
o3o3x3x3/2*b3/2x - (contains "2thah")
x3x3x3x3/2*b3/2o - [Grünbaumian]
x3x3x3o3/2*b3/2x - [Grünbaumian]
x3x3o3x3/2*b3/2x - [Grünbaumian]
x3o3x3x3/2*b3/2x - (contains "2thah")
o3x3x3x3/2*b3/2x - [Grünbaumian]
x3x3x3x3/2*b3/2x - [Grünbaumian]
|
x3o3o3/2o3*b3/2o - (contains "2pen")
o3x3o3/2o3*b3/2o - (contains "2tet")
o3o3x3/2o3*b3/2o - (contains "2tet")
o3o3o3/2o3*b3/2x - (contains "2pen")
x3x3o3/2o3*b3/2o - (contains "2tet")
x3o3x3/2o3*b3/2o - (contains "2tet")
x3o3o3/2o3*b3/2x - (contains "2pen")
o3x3x3/2o3*b3/2o - rawt
o3x3o3/2o3*b3/2x - [Grünbaumian]
o3o3x3/2x3*b3/2o - [Grünbaumian]
x3x3x3/2o3*b3/2o - ripthin
x3x3o3/2o3*b3/2x - [Grünbaumian]
x3o3x3/2x3*b3/2o - [Grünbaumian]
x3o3x3/2o3*b3/2x - (contains "2tet")
o3x3x3/2x3*b3/2o - [Grünbaumian]
o3x3x3/2o3*b3/2x - [Grünbaumian]
o3o3x3/2x3*b3/2x - [Grünbaumian]
x3x3x3/2x3*b3/2o - [Grünbaumian]
x3x3x3/2o3*b3/2x - [Grünbaumian]
x3o3x3/2x3*b3/2x - [Grünbaumian]
o3x3x3/2x3*b3/2x - [Grünbaumian]
x3x3x3/2x3*b3/2x - [Grünbaumian]
|
x3o3/2o3/2o3/2*b3/2o - (contains "2pen")
o3x3/2o3/2o3/2*b3/2o - (contains "2tet")
o3o3/2x3/2o3/2*b3/2o - (contains "2tet")
o3o3/2o3/2o3/2*b3/2x - (contains "2pen")
x3x3/2o3/2o3/2*b3/2o - (contains "2tet")
x3o3/2x3/2o3/2*b3/2o - (contains "2tet")
x3o3/2o3/2o3/2*b3/2x - (contains "2pen")
o3x3/2x3/2o3/2*b3/2o - [Grünbaumian]
o3x3/2o3/2o3/2*b3/2x - [Grünbaumian]
o3o3/2x3/2x3/2*b3/2o - [Grünbaumian]
x3x3/2x3/2o3/2*b3/2o - [Grünbaumian]
x3x3/2o3/2o3/2*b3/2x - [Grünbaumian]
x3o3/2x3/2x3/2*b3/2o - [Grünbaumian]
x3o3/2x3/2o3/2*b3/2x - (contains "2tet")
o3x3/2x3/2x3/2*b3/2o - [Grünbaumian]
o3x3/2x3/2o3/2*b3/2x - [Grünbaumian]
o3o3/2x3/2x3/2*b3/2x - [Grünbaumian]
x3x3/2x3/2x3/2*b3/2o - [Grünbaumian]
x3x3/2x3/2o3/2*b3/2x - [Grünbaumian]
x3o3/2x3/2x3/2*b3/2x - [Grünbaumian]
o3x3/2x3/2x3/2*b3/2x - [Grünbaumian]
x3x3/2x3/2x3/2*b3/2x - [Grünbaumian]
|
x3/2o3o3o3/2*b3/2o - (contains "2pen")
o3/2x3o3o3/2*b3/2o - (contains "2tet")
o3/2o3x3o3/2*b3/2o - (contains "2tet")
o3/2o3o3x3/2*b3/2o - (contains "2tet")
x3/2x3o3o3/2*b3/2o - [Grünbaumian]
x3/2o3x3o3/2*b3/2o - (contains "2tet")
x3/2o3o3x3/2*b3/2o - (contains "2tet")
x3/2o3o3o3/2*b3/2x - (contains "2pen")
o3/2x3x3o3/2*b3/2o - rawt
o3/2x3o3x3/2*b3/2o - [Grünbaumian]
o3/2o3x3x3/2*b3/2o - "2rinhit"
x3/2x3x3o3/2*b3/2o - [Grünbaumian]
x3/2x3o3x3/2*b3/2o - [Grünbaumian]
x3/2x3o3o3/2*b3/2x - [Grünbaumian]
x3/2o3x3x3/2*b3/2o - (contains "2thah")
x3/2o3x3o3/2*b3/2x - (contains "2tet")
x3/2o3o3x3/2*b3/2x - (contains "2tet")
o3/2x3x3x3/2*b3/2o - [Grünbaumian]
x3/2x3x3x3/2*b3/2o - [Grünbaumian]
x3/2x3x3o3/2*b3/2x - [Grünbaumian]
x3/2x3o3x3/2*b3/2x - [Grünbaumian]
x3/2o3x3x3/2*b3/2x - (contains "2thah")
x3/2x3x3x3/2*b3/2x - [Grünbaumian]
|
x3/2o3o3/2o3*b3/2o - (contains "2pen")
o3/2x3o3/2o3*b3/2o - (contains "2tet")
o3/2o3x3/2o3*b3/2o - (contains "2tet")
x3/2x3o3/2o3*b3/2o - [Grünbaumian]
x3/2o3x3/2o3*b3/2o - (contains "2tet")
x3/2o3o3/2o3*b3/2x - (contains "2pen")
o3/2x3x3/2o3*b3/2o - rawt
o3/2o3x3/2x3*b3/2o - [Grünbaumian]
x3/2x3x3/2o3*b3/2o - [Grünbaumian]
x3/2x3o3/2o3*b3/2x - [Grünbaumian]
x3/2o3x3/2x3*b3/2o - [Grünbaumian]
x3/2o3x3/2o3*b3/2x - (contains "2tet")
o3/2x3x3/2x3*b3/2o - [Grünbaumian]
x3/2x3x3/2x3*b3/2o - [Grünbaumian]
x3/2x3x3/2o3*b3/2x - [Grünbaumian]
x3/2o3x3/2x3*b3/2x - [Grünbaumian]
x3/2x3x3/2x3*b3/2x - [Grünbaumian]
|
x3/2o3/2o3/2o3/2*b3/2o - (contains "2pen")
o3/2x3/2o3/2o3/2*b3/2o - (contains "2tet")
o3/2o3/2x3/2o3/2*b3/2o - (contains "2tet")
x3/2x3/2o3/2o3/2*b3/2o - [Grünbaumian]
x3/2o3/2x3/2o3/2*b3/2o - (contains "2tet")
x3/2o3/2o3/2o3/2*b3/2x - (contains "2pen")
o3/2x3/2x3/2o3/2*b3/2o - [Grünbaumian]
o3/2o3/2x3/2x3/2*b3/2o - [Grünbaumian]
x3/2x3/2x3/2o3/2*b3/2o - [Grünbaumian]
x3/2x3/2o3/2o3/2*b3/2x - [Grünbaumian]
x3/2o3/2x3/2x3/2*b3/2o - [Grünbaumian]
x3/2o3/2x3/2o3/2*b3/2x - (contains "2tet")
o3/2x3/2x3/2x3/2*b3/2o - [Grünbaumian]
x3/2x3/2x3/2x3/2*b3/2o - [Grünbaumian]
x3/2x3/2x3/2o3/2*b3/2x - [Grünbaumian]
x3/2o3/2x3/2x3/2*b3/2x - [Grünbaumian]
x3/2x3/2x3/2x3/2*b3/2x - [Grünbaumian]
|