Site Map Polytopes Dynkin Diagrams Vertex Figures, etc. Incidence Matrices Index

---- 5D ----

This page is available sorted by point-group symmetry (below)
or by complexity (older version).


Terse Overview of Irreduzible Dynkin Graph Types

(For obvious reasons only the existing 4D graph types, which exist as subgroups in 5D as well, have to be extended here.)

Linear Tridental Loop & Tail
                             
                             
                             
  o--P--o--Q--o--R--o--S--o  
                             
                             
                             
 o-P-o-Q-o *b-R-o-S-o  = 
                         
  o_                     
     -P_                 
         >o--R--o--S--o  
     _Q-                 
  o-                     
 o-P-o-Q-o-R-o-S-o-T-*c  = 
                           
                     _o    
                 _R-  |    
  o--P--o--Q--o<      | S  
                 -T_  |    
                     -o    
 o-P-o-Q-o-R-o-S-o-T-*b  = 
                           
    o---P---o---Q---o      
            |       |      
            T       R      
            |       |      
            o---S---o      
Two Armed Two Legged Prolate Crossed Rhomb & Tail Oblate Crossed Rhomb & Tail
 o-P-o-Q-o-R-o *b-S-o-T-*c  = 
                              
     o--P--o--Q--o--R--o      
            \   /             
           S \ / T            
              o               
                              
  o-P-o-Q-o-R-o-S-*b-T-o  = 
                            
    o_             _o       
       -P_     _Q-  |       
           >o<      | R     
       _T-     -S_  |       
    o-             -o       
 o-P-o-Q-o-R-o-S-o-T-*b *c-U-*e  = 
                                   
      o---P---o---Q---o            
               \     / \           
                T   U   R          
                 \ /     \         
                  o---S---o        
 o-P-o-Q-o-R-o-S-o-T-*b-U-*d  = 
                                
      o---Q---o---P---o         
       \     / \                
        R   U   T               
         \ /     \              
          o---S---o             
Bowtie Loop House Three Looped
 o-P-o-Q-o-R-*a-S-o-T-o-U-*a  =
                               
       o_             _o       
       |  -P_     _U-  |       
     Q |      >o<      | T     
       |  _R-     -S_  |       
       o-             -o       
 o-P-o-Q-o-R-o-S-o-T-*a  =  
            _o_             
        _T-     -P_         
     o-             -o      
      \             /       
       S           Q        
        \         /         
         o---R---o          
 o-P-o-Q-o-R-o-S-o-T-*a-U-*c  = 
                                
      o---T---o_                
      |       |  -P_            
      S       U      >o         
      |       |  _Q-            
      o---R---o                 
 o-P-o-Q-o-R-*a-S-o-T-o-U-*a *c-V-*e =
                                      
          o---P---o---U---o           
           \     / \     /            
            Q   R   S   T             
             \ /     \ /              
              o---V---o               
Tetrahedron & Tail Others
 o-P-o-Q-o-R-o-S-o-T-*b-U-*d *c-V-*e =
                           _o         
                        _- /|         
                    _Q-   R |         
                 _-     /   |         
      o---P---o<---U---o    V         
                 -_     \   |         
                    -T_   S |         
                        -_ \|         
                           -o         

In the following symmetry listings "etc." means replacments according to 33/2, to 44/3, to 55/4, or to 5/25/3.

Polytera with Grünbaumian elements so far are not investigated any further. Those are Grünbaumian a priori, usually because of some subgraph -x-n/d-x-, where d is even. Others, which come out as being Grünbaumian a posteriori will be given none the less.




two armed ones
 o-P-o-Q-o-R-o *b-S-o-T-*c  = 
                              
     o--P--o--Q--o--R--o      
            \   /             
           S \ / T            
              o               
                              

Hexateral Symmetries   (up)

o3o3o3o *b3o3/2*c o3o3o3/2o *b3o3/2*c o3/2o3o3o *b3o3/2*c o3/2o3o3/2o *b3o3/2*c
x3o3o3o *b3o3/2*c - (contains "2pen")
o3x3o3o *b3o3/2*c - (contains "2tet")
o3o3x3o *b3o3/2*c - (contains "2tet")
o3o3o3x *b3o3/2*c - (contains "2pen")
o3o3o3o *b3x3/2*c - (contains "2tet")

x3x3o3o *b3o3/2*c - (contains "2tet")
x3o3x3o *b3o3/2*c - (contains "2tet")
x3o3o3x *b3o3/2*c - (contains "2pen")
x3o3o3o *b3x3/2*c - (contains "2tet")
o3x3x3o *b3o3/2*c - rabird
o3x3o3x *b3o3/2*c - (contains "2tet")
o3x3o3o *b3x3/2*c - rippix
o3o3x3x *b3o3/2*c - (contains "2tet")
o3o3x3o *b3x3/2*c - [Grünbaumian]
o3o3o3x *b3x3/2*c - (contains "2tet")

x3x3x3o *b3o3/2*c - roptix
x3x3o3x *b3o3/2*c - (contains "2tet")
x3x3o3o *b3x3/2*c - racpix
x3o3x3x *b3o3/2*c - (contains "2tet")
x3o3x3o *b3x3/2*c - [Grünbaumian]
x3o3o3x *b3x3/2*c - (contains "2tet")
o3x3x3x *b3o3/2*c - roptix
o3x3x3o *b3x3/2*c - [Grünbaumian]
o3x3o3x *b3x3/2*c - (contains "2thah")
o3o3x3x *b3x3/2*c - [Grünbaumian]

x3x3x3x *b3o3/2*c - recaptid
x3x3x3o *b3x3/2*c - [Grünbaumian]
x3x3o3x *b3x3/2*c - (contains "2thah")
x3o3x3x *b3x3/2*c - [Grünbaumian]
o3x3x3x *b3x3/2*c - [Grünbaumian]

x3x3x3x *b3x3/2*c - [Grünbaumian]
x3o3o3/2o *b3o3/2*c - (contains "2pen")
o3x3o3/2o *b3o3/2*c - (contains "2tet")
o3o3x3/2o *b3o3/2*c - (contains "2tet")
o3o3o3/2x *b3o3/2*c - (contains "2pen")
o3o3o3/2o *b3x3/2*c - (contains "2tet")

x3x3o3/2o *b3o3/2*c - (contains "2tet")
x3o3x3/2o *b3o3/2*c - (contains "2tet")
x3o3o3/2x *b3o3/2*c - (contains "2pen")
x3o3o3/2o *b3x3/2*c - (contains "2tet")
o3x3x3/2o *b3o3/2*c - rabird
o3x3o3/2x *b3o3/2*c - (contains "2tet")
o3x3o3/2o *b3x3/2*c - rippix
o3o3x3/2x *b3o3/2*c - [Grünbaumian]
o3o3x3/2o *b3x3/2*c - [Grünbaumian]
o3o3o3/2x *b3x3/2*c - (contains "2tet")

x3x3x3/2o *b3o3/2*c - roptix
x3x3o3/2x *b3o3/2*c - (contains "2tet")
x3x3o3/2o *b3x3/2*c - racpix
x3o3x3/2x *b3o3/2*c - [Grünbaumian]
x3o3x3/2o *b3x3/2*c - [Grünbaumian]
x3o3o3/2x *b3x3/2*c - (contains "2tet")
o3x3x3/2x *b3o3/2*c - [Grünbaumian]
o3x3x3/2o *b3x3/2*c - [Grünbaumian]
o3x3o3/2x *b3x3/2*c - (contains "2thah")
o3o3x3/2x *b3x3/2*c - [Grünbaumian]

x3x3x3/2x *b3o3/2*c - [Grünbaumian]
x3x3x3/2o *b3x3/2*c - [Grünbaumian]
x3x3o3/2x *b3x3/2*c - (contains "2thah")
x3o3x3/2x *b3x3/2*c - [Grünbaumian]
o3x3x3/2x *b3x3/2*c - [Grünbaumian]

x3x3x3/2x *b3x3/2*c - [Grünbaumian]
x3/2o3o3o *b3o3/2*c - (contains "2pen")
o3/2x3o3o *b3o3/2*c - (contains "2tet")
o3/2o3x3o *b3o3/2*c - (contains "2tet")
o3/2o3o3x *b3o3/2*c - (contains "2pen")
o3/2o3o3o *b3x3/2*c - (contains "2tet")

x3/2x3o3o *b3o3/2*c - [Grünbaumian]
x3/2o3x3o *b3o3/2*c - (contains "2tet")
x3/2o3o3x *b3o3/2*c - (contains "2pen")
x3/2o3o3o *b3x3/2*c - (contains "2tet")
o3/2x3x3o *b3o3/2*c - rabird
o3/2x3o3x *b3o3/2*c - (contains "2tet")
o3/2x3o3o *b3x3/2*c - rippix
o3/2o3x3x *b3o3/2*c - (contains "2tet")
o3/2o3x3o *b3x3/2*c - [Grünbaumian]
o3/2o3o3x *b3x3/2*c - (contains "2tet")

x3/2x3x3o *b3o3/2*c - [Grünbaumian]
x3/2x3o3x *b3o3/2*c - [Grünbaumian]
x3/2x3o3o *b3x3/2*c - [Grünbaumian]
x3/2o3x3x *b3o3/2*c - (contains "2tet")
x3/2o3x3o *b3x3/2*c - [Grünbaumian]
x3/2o3o3x *b3x3/2*c - (contains "2tet")
o3/2x3x3x *b3o3/2*c - roptix
o3/2x3x3o *b3x3/2*c - [Grünbaumian]
o3/2x3o3x *b3x3/2*c - (contains "2thah")
o3/2o3x3x *b3x3/2*c - [Grünbaumian]

x3/2x3x3x *b3o3/2*c - [Grünbaumian]
x3/2x3x3o *b3x3/2*c - [Grünbaumian]
x3/2x3o3x *b3x3/2*c - [Grünbaumian]
x3/2o3x3x *b3x3/2*c - [Grünbaumian]
o3/2x3x3x *b3x3/2*c - [Grünbaumian]

x3/2x3x3x *b3x3/2*c - [Grünbaumian]
x3/2o3o3/2o *b3o3/2*c - (contains "2pen")
o3/2x3o3/2o *b3o3/2*c - (contains "2tet")
o3/2o3x3/2o *b3o3/2*c - (contains "2tet")
o3/2o3o3/2x *b3o3/2*c - (contains "2pen")
o3/2o3o3/2o *b3x3/2*c - (contains "2tet")

x3/2x3o3/2o *b3o3/2*c - [Grünbaumian]
x3/2o3x3/2o *b3o3/2*c - (contains "2tet")
x3/2o3o3/2x *b3o3/2*c - (contains "2pen")
x3/2o3o3/2o *b3x3/2*c - (contains "2tet")
o3/2x3x3/2o *b3o3/2*c - rabird
o3/2x3o3/2x *b3o3/2*c - (contains "2tet")
o3/2x3o3/2o *b3x3/2*c - rippix
o3/2o3x3/2x *b3o3/2*c - [Grünbaumian]
o3/2o3x3/2o *b3x3/2*c - [Grünbaumian]
o3/2o3o3/2x *b3x3/2*c - (contains "2tet")

x3/2x3x3/2o *b3o3/2*c - [Grünbaumian]
x3/2x3o3/2x *b3o3/2*c - [Grünbaumian]
x3/2x3o3/2o *b3x3/2*c - [Grünbaumian]
x3/2o3x3/2x *b3o3/2*c - [Grünbaumian]
x3/2o3x3/2o *b3x3/2*c - [Grünbaumian]
x3/2o3o3/2x *b3x3/2*c - (contains "2tet")
o3/2x3x3/2x *b3o3/2*c - [Grünbaumian]
o3/2x3x3/2o *b3x3/2*c - [Grünbaumian]
o3/2x3o3/2x *b3x3/2*c - (contains "2thah")
o3/2o3x3/2x *b3x3/2*c - [Grünbaumian]

x3/2x3x3/2x *b3o3/2*c - [Grünbaumian]
x3/2x3x3/2o *b3x3/2*c - [Grünbaumian]
x3/2x3o3/2x *b3x3/2*c - [Grünbaumian]
x3/2o3x3/2x *b3x3/2*c - [Grünbaumian]
o3/2x3x3/2x *b3x3/2*c - [Grünbaumian]

x3/2x3x3/2x *b3x3/2*c - [Grünbaumian]
o3o3/2o3o *b3o3*c o3o3/2o3/2o *b3o3*c o3/2o3/2o3/2o *b3o3*c  
x3o3/2o3o *b3o3*c - (contains "2pen")
o3x3/2o3o *b3o3*c - (contains "2tet")


o3o3/2o3o *b3x3*c - (contains "2tet")

x3x3/2o3o *b3o3*c - (contains "2tet")
x3o3/2x3o *b3o3*c - (contains "2tet")
x3o3/2o3x *b3o3*c - (contains "2pen")
x3o3/2o3o *b3x3*c - (contains "2tet")
o3x3/2x3o *b3o3*c - [Grünbaumian]

o3x3/2o3o *b3x3*c - rippix




x3x3/2x3o *b3o3*c - [Grünbaumian]
x3x3/2o3x *b3o3*c - (contains "2tet")
x3x3/2o3o *b3x3*c - racpix

x3o3/2x3o *b3x3*c - (contains "2thah")
x3o3/2o3x *b3x3*c - (contains "2tet")

o3x3/2x3o *b3x3*c - [Grünbaumian]



x3x3/2x3x *b3o3*c - [Grünbaumian]
x3x3/2x3o *b3x3*c - [Grünbaumian]
x3x3/2o3x *b3x3*c - (contains "2thah")



x3x3/2x3x *b3x3*c - [Grünbaumian]
x3o3/2o3/2o *b3o3*c - (contains "2pen")
o3x3/2o3/2o *b3o3*c - (contains "2tet")
o3o3/2x3/2o *b3o3*c - (contains "2tet")
o3o3/2o3/2x *b3o3*c - (contains "2pen")
o3o3/2o3/2o *b3x3*c - (contains "2tet")

x3x3/2o3/2o *b3o3*c - (contains "2tet")
x3o3/2x3/2o *b3o3*c - (contains "2tet")
x3o3/2o3/2x *b3o3*c - (contains "2pen")
x3o3/2o3/2o *b3x3*c - (contains "2tet")
o3x3/2x3/2o *b3o3*c - [Grünbaumian]
o3x3/2o3/2x *b3o3*c - (contains "2tet")
o3x3/2o3/2o *b3x3*c - rippix
o3o3/2x3/2x *b3o3*c - (contains "2tet")
o3o3/2x3/2o *b3x3*c - rippix
o3o3/2o3/2x *b3x3*c - (contains "2tet")

x3x3/2x3/2o *b3o3*c - [Grünbaumian]
x3x3/2o3/2x *b3o3*c - (contains "2tet")
x3x3/2o3/2o *b3x3*c - racpix
x3o3/2x3/2x *b3o3*c - [Grünbaumian]
x3o3/2x3/2o *b3x3*c - (contains "2thah")
x3o3/2o3/2x *b3x3*c - (contains "2tet")
o3x3/2x3/2x *b3o3*c - [Grünbaumian]
o3x3/2x3/2o *b3x3*c - [Grünbaumian]
o3x3/2o3/2x *b3x3*c - (contains "2thah")
o3o3/2x3/2x *b3x3*c - [Grünbaumian]

x3x3/2x3/2x *b3o3*c - [Grünbaumian]
x3x3/2x3/2o *b3x3*c - [Grünbaumian]
x3x3/2o3/2x *b3x3*c - (contains "2thah")
x3o3/2x3/2x *b3x3*c - [Grünbaumian]
o3x3/2x3/2x *b3x3*c - [Grünbaumian]

x3x3/2x3/2x *b3x3*c - [Grünbaumian]
x3/2o3/2o3/2o *b3o3*c - (contains "2pen")
o3/2x3/2o3/2o *b3o3*c - (contains "2tet")


o3/2o3/2o3/2o *b3x3*c - (contains "2tet")

x3/2x3/2o3/2o *b3o3*c - [Grünbaumian]
x3/2o3/2x3/2o *b3o3*c - (contains "2tet")
x3/2o3/2o3/2x *b3o3*c - (contains "2pen")
x3/2o3/2o3/2o *b3x3*c - (contains "2tet")
o3/2x3/2x3/2o *b3o3*c - [Grünbaumian]

o3/2x3/2o3/2o *b3x3*c - rippix




x3/2x3/2x3/2o *b3o3*c - [Grünbaumian]
x3/2x3/2o3/2x *b3o3*c - [Grünbaumian]
x3/2x3/2o3/2o *b3x3*c - [Grünbaumian]

x3/2o3/2x3/2o *b3x3*c - (contains "2thah")
x3/2o3/2o3/2x *b3x3*c - (contains "2tet")

o3/2x3/2x3/2o *b3x3*c - [Grünbaumian]



x3/2x3/2x3/2x *b3o3*c - [Grünbaumian]
x3/2x3/2x3/2o *b3x3*c - [Grünbaumian]
x3/2x3/2o3/2x *b3x3*c - [Grünbaumian]



x3/2x3/2x3/2x *b3x3*c - [Grünbaumian]
 
o3o3/2o3o *b3/2o3/2*c o3o3/2o3/2o *b3/2o3/2*c o3/2o3/2o3/2o *b3/2o3/2*c  
x3o3/2o3o *b3/2o3/2*c - (contains "2pen")
o3x3/2o3o *b3/2o3/2*c - (contains "2tet")


o3o3/2o3o *b3/2x3/2*c - (contains "2tet")

x3x3/2o3o *b3/2o3/2*c - (contains "2tet")
x3o3/2x3o *b3/2o3/2*c - (contains "2tet")
x3o3/2o3x *b3/2o3/2*c - (contains "2pen")
x3o3/2o3o *b3/2x3/2*c - (contains "2tet")
o3x3/2x3o *b3/2o3/2*c - [Grünbaumian]

o3x3/2o3o *b3/2x3/2*c - [Grünbaumian]




x3x3/2x3o *b3/2o3/2*c - [Grünbaumian]
x3x3/2o3x *b3/2o3/2*c - (contains "2tet")
x3x3/2o3o *b3/2x3/2*c - [Grünbaumian]

x3o3/2x3o *b3/2x3/2*c - [Grünbaumian]
x3o3/2o3x *b3/2x3/2*c - (contains "2tet")

o3x3/2x3o *b3/2x3/2*c - [Grünbaumian]



x3x3/2x3x *b3/2o3/2*c - [Grünbaumian]
x3x3/2x3o *b3/2x3/2*c - [Grünbaumian]
x3x3/2o3x *b3/2x3/2*c - [Grünbaumian]



x3x3/2x3x *b3/2x3/2*c - [Grünbaumian]
x3o3/2o3/2o *b3/2o3/2*c - (contains "2pen")
o3x3/2o3/2o *b3/2o3/2*c - (contains "2tet")
o3o3/2x3/2o *b3/2o3/2*c - (contains "2tet")
o3o3/2o3/2x *b3/2o3/2*c - (contains "2pen")
o3o3/2o3/2o *b3/2x3/2*c - (contains "2tet")

x3x3/2o3/2o *b3/2o3/2*c - (contains "2tet")
x3o3/2x3/2o *b3/2o3/2*c - (contains "2tet")
x3o3/2o3/2x *b3/2o3/2*c - (contains "2pen")
x3o3/2o3/2o *b3/2x3/2*c - (contains "2tet")
o3x3/2x3/2o *b3/2o3/2*c - [Grünbaumian]
o3x3/2o3/2x *b3/2o3/2*c - (contains "2tet")
o3x3/2o3/2o *b3/2x3/2*c - [Grünbaumian]
o3o3/2x3/2x *b3/2o3/2*c - [Grünbaumian]
o3o3/2x3/2o *b3/2x3/2*c - [Grünbaumian]
o3o3/2o3/2x *b3/2x3/2*c - (contains "2tet")

x3x3/2x3/2o *b3/2o3/2*c - [Grünbaumian]
x3x3/2o3/2x *b3/2o3/2*c - (contains "2tet")
x3x3/2o3/2o *b3/2x3/2*c - [Grünbaumian]
x3o3/2x3/2x *b3/2o3/2*c - [Grünbaumian]
x3o3/2x3/2o *b3/2x3/2*c - [Grünbaumian]
x3o3/2o3/2x *b3/2x3/2*c - (contains "2tet")
o3x3/2x3/2x *b3/2o3/2*c - [Grünbaumian]
o3x3/2x3/2o *b3/2x3/2*c - [Grünbaumian]
o3x3/2o3/2x *b3/2x3/2*c - [Grünbaumian]
o3o3/2x3/2x *b3/2x3/2*c - [Grünbaumian]

x3x3/2x3/2x *b3/2o3/2*c - [Grünbaumian]
x3x3/2x3/2o *b3/2x3/2*c - [Grünbaumian]
x3x3/2o3/2x *b3/2x3/2*c - [Grünbaumian]
x3o3/2x3/2x *b3/2x3/2*c - [Grünbaumian]
o3x3/2x3/2x *b3/2x3/2*c - [Grünbaumian]

x3x3/2x3/2x *b3/2x3/2*c - [Grünbaumian]
x3/2o3/2o3/2o *b3/2o3/2*c - (contains "2pen")
o3/2x3/2o3/2o *b3/2o3/2*c - (contains "2tet")


o3/2o3/2o3/2o *b3/2x3/2*c - (contains "2tet")

x3/2x3/2o3/2o *b3/2o3/2*c - [Grünbaumian]
x3/2o3/2x3/2o *b3/2o3/2*c - (contains "2tet")
x3/2o3/2o3/2x *b3/2o3/2*c - (contains "2pen")
x3/2o3/2o3/2o *b3/2x3/2*c - (contains "2tet")
o3/2x3/2x3/2o *b3/2o3/2*c - [Grünbaumian]

o3/2x3/2o3/2o *b3/2x3/2*c - [Grünbaumian]




x3/2x3/2x3/2o *b3/2o3/2*c - [Grünbaumian]
x3/2x3/2o3/2x *b3/2o3/2*c - [Grünbaumian]
x3/2x3/2o3/2o *b3/2x3/2*c - [Grünbaumian]

x3/2o3/2x3/2o *b3/2x3/2*c - [Grünbaumian]
x3/2o3/2o3/2x *b3/2x3/2*c - (contains "2tet")

o3/2x3/2x3/2o *b3/2x3/2*c - [Grünbaumian]



x3/2x3/2x3/2x *b3/2o3/2*c - [Grünbaumian]
x3/2x3/2x3/2o *b3/2x3/2*c - [Grünbaumian]
x3/2x3/2o3/2x *b3/2x3/2*c - [Grünbaumian]



x3/2x3/2x3/2x *b3/2x3/2*c - [Grünbaumian]
 

Penteractic Symmetries – type o3o3o4o *b3o3/2*d   (up)

o3o3o4o *b3o3/2*c o3o3o4/3o *b3o3/2*c o3/2o3o4o *b3o3/2*c o3/2o3o4/3o *b3o3/2*c
x3o3o4o *b3o3/2*c - (contains "2pen")
o3x3o4o *b3o3/2*c - (contains "2tet")
o3o3x4o *b3o3/2*c - (contains "2tet")
o3o3o4x *b3o3/2*c - (contains "2tes")
o3o3o4o *b3x3/2*c - (contains "2tet")

x3x3o4o *b3o3/2*c - (contains "2tet")
x3o3x4o *b3o3/2*c - (contains "2tet")
x3o3o4x *b3o3/2*c - (contains "2pen")
x3o3o4o *b3x3/2*c - (contains "2tet")
o3x3x4o *b3o3/2*c - ribrant
o3x3o4x *b3o3/2*c - (contains "2tet")
o3x3o4o *b3x3/2*c - (contains "2oh")
o3o3x4x *b3o3/2*c - (contains "2tet")
o3o3x4o *b3x3/2*c - [Grünbaumian]
o3o3o4x *b3x3/2*c - (contains "2tet")

x3x3x4o *b3o3/2*c - roptit
x3x3o4x *b3o3/2*c - (contains "2tet")
x3x3o4o *b3x3/2*c - (contains "2oh")
x3o3x4x *b3o3/2*c - (contains "2tet")
x3o3x4o *b3x3/2*c - [Grünbaumian]
x3o3o4x *b3x3/2*c - (contains "2tet")
o3x3x4x *b3o3/2*c - sroptin
o3x3x4o *b3x3/2*c - [Grünbaumian]
o3x3o4x *b3x3/2*c - skovactaden
o3o3x4x *b3x3/2*c - [Grünbaumian]

x3x3x4x *b3o3/2*c - sircaptint
x3x3x4o *b3x3/2*c - [Grünbaumian]
x3x3o4x *b3x3/2*c - scadnicat
x3o3x4x *b3x3/2*c - [Grünbaumian]
o3x3x4x *b3x3/2*c - [Grünbaumian]

x3x3x4x *b3x3/2*c - [Grünbaumian]
x3o3o4/3o *b3o3/2*c - (contains "2pen")
o3x3o4/3o *b3o3/2*c - (contains "2tet")
o3o3x4/3o *b3o3/2*c - (contains "2tet")
o3o3o4/3x *b3o3/2*c - (contains "2tes")
o3o3o4/3o *b3x3/2*c - (contains "2tet")

x3x3o4/3o *b3o3/2*c - (contains "2tet")
x3o3x4/3o *b3o3/2*c - (contains "2tet")
x3o3o4/3x *b3o3/2*c - (contains "2pen")
x3o3o4/3o *b3x3/2*c - (contains "2tet")
o3x3x4/3o *b3o3/2*c - ribrant
o3x3o4/3x *b3o3/2*c - (contains "2tet")
o3x3o4/3o *b3x3/2*c - (contains "2oh")
o3o3x4/3x *b3o3/2*c - (contains "2tet")
o3o3x4/3o *b3x3/2*c - [Grünbaumian]
o3o3o4/3x *b3x3/2*c - (contains "2tet")

x3x3x4/3o *b3o3/2*c - roptit
x3x3o4/3x *b3o3/2*c - (contains "2tet")
x3x3o4/3o *b3x3/2*c - (contains "2oh")
x3o3x4/3x *b3o3/2*c - (contains "2tet")
x3o3x4/3o *b3x3/2*c - [Grünbaumian]
x3o3o4/3x *b3x3/2*c - (contains "2tet")
o3x3x4/3x *b3o3/2*c - groptin
o3x3x4/3o *b3x3/2*c - [Grünbaumian]
o3x3o4/3x *b3x3/2*c - gokvactaden
o3o3x4/3x *b3x3/2*c - [Grünbaumian]

x3x3x4/3x *b3o3/2*c - gircaptint
x3x3x4/3o *b3x3/2*c - [Grünbaumian]
x3x3o4/3x *b3x3/2*c - gacdincat
x3o3x4/3x *b3x3/2*c - [Grünbaumian]
o3x3x4/3x *b3x3/2*c - [Grünbaumian]

x3x3x4/3x *b3x3/2*c - [Grünbaumian]
x3/2o3o4o *b3o3/2*c - (contains "2pen")
o3/2x3o4o *b3o3/2*c - (contains "2tet")
o3/2o3x4o *b3o3/2*c - (contains "2tet")
o3/2o3o4x *b3o3/2*c - (contains "2tes")
o3/2o3o4o *b3x3/2*c - (contains "2tet")

x3/2x3o4o *b3o3/2*c - [Grünbaumian]
x3/2o3x4o *b3o3/2*c - (contains "2tet")
x3/2o3o4x *b3o3/2*c - (contains "2pen")
x3/2o3o4o *b3x3/2*c - (contains "2tet")
o3/2x3x4o *b3o3/2*c - ribrant
o3/2x3o4x *b3o3/2*c - (contains "2tet")
o3/2x3o4o *b3x3/2*c - (contains "2oh")
o3/2o3x4x *b3o3/2*c - (contains "2tet")
o3/2o3x4o *b3x3/2*c - [Grünbaumian]
o3/2o3o4x *b3x3/2*c - [Grünbaumian]

x3/2x3x4o *b3o3/2*c - [Grünbaumian]
x3/2x3o4x *b3o3/2*c - [Grünbaumian]
x3/2x3o4o *b3x3/2*c - [Grünbaumian]
x3/2o3x4x *b3o3/2*c - (contains "2tet")
x3/2o3x4o *b3x3/2*c - [Grünbaumian]
x3/2o3o4x *b3x3/2*c - (contains "2tet")
o3/2x3x4x *b3o3/2*c - sroptin
o3/2x3x4o *b3x3/2*c - [Grünbaumian]
o3/2x3o4x *b3x3/2*c - skovactaden
o3/2o3x4x *b3x3/2*c - [Grünbaumian]

x3/2x3x4x *b3o3/2*c - [Grünbaumian]
x3/2x3x4o *b3x3/2*c - [Grünbaumian]
x3/2x3o4x *b3x3/2*c - [Grünbaumian]
x3/2o3x4x *b3x3/2*c - [Grünbaumian]
o3/2x3x4x *b3x3/2*c - [Grünbaumian]

x3/2x3x4x *b3x3/2*c - [Grünbaumian]
x3/2o3o4/3o *b3o3/2*c - (contains "2pen")
o3/2x3o4/3o *b3o3/2*c - (contains "2tet")
o3/2o3x4/3o *b3o3/2*c - (contains "2tet")
o3/2o3o4/3x *b3o3/2*c - (contains "2tes")
o3/2o3o4/3o *b3x3/2*c - (contains "2tet")

x3/2x3o4/3o *b3o3/2*c - [Grünbaumian]
x3/2o3x4/3o *b3o3/2*c - (contains "2tet")
x3/2o3o4/3x *b3o3/2*c - (contains "2pen")
x3/2o3o4/3o *b3x3/2*c - (contains "2tet")
o3/2x3x4/3o *b3o3/2*c - ribrant
o3/2x3o4/3x *b3o3/2*c - (contains "2tet")
o3/2x3o4/3o *b3x3/2*c - (contains "2oh")
o3/2o3x4/3x *b3o3/2*c - (contains "2tet")
o3/2o3x4/3o *b3x3/2*c - [Grünbaumian]
o3/2o3o4/3x *b3x3/2*c - (contains "2tet")

x3/2x3x4/3o *b3o3/2*c - [Grünbaumian]
x3/2x3o4/3x *b3o3/2*c - [Grünbaumian]
x3/2x3o4/3o *b3x3/2*c - [Grünbaumian]
x3/2o3x4/3x *b3o3/2*c - (contains "2tet")
x3/2o3x4/3o *b3x3/2*c - [Grünbaumian]
x3/2o3o4/3x *b3x3/2*c - (contains "2tet")
o3/2x3x4/3x *b3o3/2*c - groptin
o3/2x3x4/3o *b3x3/2*c - [Grünbaumian]
o3/2x3o4/3x *b3x3/2*c - gokvactaden
o3/2o3x4/3x *b3x3/2*c - [Grünbaumian]

x3/2x3x4/3x *b3o3/2*c - [Grünbaumian]
x3/2x3x4/3o *b3x3/2*c - [Grünbaumian]
x3/2x3o4/3x *b3x3/2*c - [Grünbaumian]
x3/2o3x4/3x *b3x3/2*c - [Grünbaumian]
o3/2x3x4/3x *b3x3/2*c - [Grünbaumian]

x3/2x3x4/3x *b3x3/2*c - [Grünbaumian]
o3o3o4o *b3/2o3*c o3o3o4/3o *b3/2o3*c o3/2o3o4o *b3/2o3*c o3/2o3o4/3o *b3/2o3*c
x3o3o4o *b3/2o3*c - (contains "2pen")
o3x3o4o *b3/2o3*c - (contains "2tet")
o3o3x4o *b3/2o3*c - (contains "2tet")
o3o3o4x *b3/2o3*c - (contains "2tes")
o3o3o4o *b3/2x3*c - (contains "2tet")

x3x3o4o *b3/2o3*c - (contains "2tet")
x3o3x4o *b3/2o3*c - (contains "2tet")
x3o3o4x *b3/2o3*c - (contains "2pen")
x3o3o4o *b3/2x3*c - (contains "2tet")
o3x3x4o *b3/2o3*c - ribrant
o3x3o4x *b3/2o3*c - (contains "2tet")
o3x3o4o *b3/2x3*c - [Grünbaumian]
o3o3x4x *b3/2o3*c - (contains "2tet")
o3o3x4o *b3/2x3*c - ript
o3o3o4x *b3/2x3*c - (contains "2tet")

x3x3x4o *b3/2o3*c - roptit
x3x3o4x *b3/2o3*c - (contains "2tet")
x3x3o4o *b3/2x3*c - [Grünbaumian]
x3o3x4x *b3/2o3*c - (contains "2tet")
x3o3x4o *b3/2x3*c - (contains "2thah")
x3o3o4x *b3/2x3*c - (contains "2tet")
o3x3x4x *b3/2o3*c - sroptin
o3x3x4o *b3/2x3*c - [Grünbaumian]
o3x3o4x *b3/2x3*c - [Grünbaumian]
o3o3x4x *b3/2x3*c - sorcpit

x3x3x4x *b3/2o3*c - sircaptint
x3x3x4o *b3/2x3*c - [Grünbaumian]
x3x3o4x *b3/2x3*c - [Grünbaumian]
x3o3x4x *b3/2x3*c - (contains "2thah")
o3x3x4x *b3/2x3*c - [Grünbaumian]

x3x3x4x *b3/2x3*c - [Grünbaumian]
x3o3o4/3o *b3/2o3*c - (contains "2pen")
o3x3o4/3o *b3/2o3*c - (contains "2tet")
o3o3x4/3o *b3/2o3*c - (contains "2tet")
o3o3o4/3x *b3/2o3*c - (contains "2tes")
o3o3o4/3o *b3/2x3*c - (contains "2tet")

x3x3o4/3o *b3/2o3*c - (contains "2tet")
x3o3x4/3o *b3/2o3*c - (contains "2tet")
x3o3o4/3x *b3/2o3*c - (contains "2pen")
x3o3o4/3o *b3/2x3*c - (contains "2tet")
o3x3x4/3o *b3/2o3*c - ribrant
o3x3o4/3x *b3/2o3*c - (contains "2tet")
o3x3o4/3o *b3/2x3*c - [Grünbaumian]
o3o3x4/3x *b3/2o3*c - (contains "2tet")
o3o3x4/3o *b3/2x3*c - ript
o3o3o4/3x *b3/2x3*c - (contains "2tet")

x3x3x4/3o *b3/2o3*c - roptit
x3x3o4/3x *b3/2o3*c - (contains "2tet")
x3x3o4/3o *b3/2x3*c - [Grünbaumian]
x3o3x4/3x *b3/2o3*c - (contains "2tet")
x3o3x4/3o *b3/2x3*c - (contains "2thah")
x3o3o4/3x *b3/2x3*c - (contains "2tet")
o3x3x4/3x *b3/2o3*c - groptin
o3x3x4/3o *b3/2x3*c - [Grünbaumian]
o3x3o4/3x *b3/2x3*c - [Grünbaumian]
o3o3x4/3x *b3/2x3*c - gorcpit

x3x3x4/3x *b3/2o3*c - gircaptint
x3x3x4/3o *b3/2x3*c - [Grünbaumian]
x3x3o4/3x *b3/2x3*c - [Grünbaumian]
x3o3x4/3x *b3/2x3*c - (contains "2thah")
o3x3x4/3x *b3/2x3*c - [Grünbaumian]

x3x3x4/3x *b3/2x3*c - [Grünbaumian]
x3/2o3o4o *b3/2o3*c - (contains "2pen")
o3/2x3o4o *b3/2o3*c - (contains "2tet")
o3/2o3x4o *b3/2o3*c - (contains "2tet")
o3/2o3o4x *b3/2o3*c - (contains "2tes")
o3/2o3o4o *b3/2x3*c - (contains "2tet")

x3/2x3o4o *b3/2o3*c - [Grünbaumian]
x3/2o3x4o *b3/2o3*c - (contains "2tet")
x3/2o3o4x *b3/2o3*c - (contains "2pen")
x3/2o3o4o *b3/2x3*c - (contains "2tet")
o3/2x3x4o *b3/2o3*c - ribrant
o3/2x3o4x *b3/2o3*c - (contains "2tet")
o3/2x3o4o *b3/2x3*c - [Grünbaumian]
o3/2o3x4x *b3/2o3*c - (contains "2tet")
o3/2o3x4o *b3/2x3*c - ript
o3/2o3o4x *b3/2x3*c - (contains "2tet")

x3/2x3x4o *b3/2o3*c - [Grünbaumian]
x3/2x3o4x *b3/2o3*c - [Grünbaumian]
x3/2x3o4o *b3/2x3*c - [Grünbaumian]
x3/2o3x4x *b3/2o3*c - (contains "2tet")
x3/2o3x4o *b3/2x3*c - (contains "2thah")
x3/2o3o4x *b3/2x3*c - (contains "2tet")
o3/2x3x4x *b3/2o3*c - sroptin
o3/2x3x4o *b3/2x3*c - [Grünbaumian]
o3/2x3o4x *b3/2x3*c - [Grünbaumian]
o3/2o3x4x *b3/2x3*c - sorcpit

x3/2x3x4x *b3/2o3*c - [Grünbaumian]
x3/2x3x4o *b3/2x3*c - [Grünbaumian]
x3/2x3o4x *b3/2x3*c - [Grünbaumian]
x3/2o3x4x *b3/2x3*c - 
o3/2x3x4x *b3/2x3*c - [Grünbaumian]

x3/2x3x4x *b3/2x3*c - [Grünbaumian]
x3/2o3o4/3o *b3/2o3*c - (contains "2pen")
o3/2x3o4/3o *b3/2o3*c - (contains "2tet")
o3/2o3x4/3o *b3/2o3*c - (contains "2tet")
o3/2o3o4/3x *b3/2o3*c - (contains "2tes")
o3/2o3o4/3o *b3/2x3*c - (contains "2tet")

x3/2x3o4/3o *b3/2o3*c - [Grünbaumian]
x3/2o3x4/3o *b3/2o3*c - (contains "2tet")
x3/2o3o4/3x *b3/2o3*c - (contains "2pen")
x3/2o3o4/3o *b3/2x3*c - (contains "2tet")
o3/2x3x4/3o *b3/2o3*c - ribrant
o3/2x3o4/3x *b3/2o3*c - (contains "2tet")
o3/2x3o4/3o *b3/2x3*c - [Grünbaumian]
o3/2o3x4/3x *b3/2o3*c - (contains "2tet")
o3/2o3x4/3o *b3/2x3*c - ript
o3/2o3o4/3x *b3/2x3*c - (contains "2tet")

x3/2x3x4/3o *b3/2o3*c - [Grünbaumian]
x3/2x3o4/3x *b3/2o3*c - [Grünbaumian]
x3/2x3o4/3o *b3/2x3*c - [Grünbaumian]
x3/2o3x4/3x *b3/2o3*c - (contains "2tet")
x3/2o3x4/3o *b3/2x3*c - (contains "2thah")
x3/2o3o4/3x *b3/2x3*c - (contains "2tet")
o3/2x3x4/3x *b3/2o3*c - groptin
o3/2x3x4/3o *b3/2x3*c - [Grünbaumian]
o3/2x3o4/3x *b3/2x3*c - [Grünbaumian]
o3/2o3x4/3x *b3/2x3*c - gorcpit

x3/2x3x4/3x *b3/2o3*c - [Grünbaumian]
x3/2x3x4/3o *b3/2x3*c - [Grünbaumian]
x3/2x3o4/3x *b3/2x3*c - [Grünbaumian]
x3/2o3x4/3x *b3/2x3*c - 
o3/2x3x4/3x *b3/2x3*c - [Grünbaumian]

x3/2x3x4/3x *b3/2x3*c - [Grünbaumian]
o3o3/2o4o *b3o3*c o3o3/2o4/3o *b3o3*c o3/2o3/2o4o *b3o3*c o3/2o3/2o4/3o *b3o3*c
x3o3/2o4o *b3o3*c - (contains "2pen")
o3x3/2o4o *b3o3*c - (contains "2tet")
o3o3/2x4o *b3o3*c - (contains "2tet")
o3o3/2o4x *b3o3*c - (contains "2tes")
o3o3/2o4o *b3x3*c - (contains "2tet")

x3x3/2o4o *b3o3*c - (contains "2tet")
x3o3/2x4o *b3o3*c - (contains "2tet")
x3o3/2o4x *b3o3*c - (contains "2pen")
x3o3/2o4o *b3x3*c - (contains "2tet")
o3x3/2x4o *b3o3*c - [Grünbaumian]
o3x3/2o4x *b3o3*c - (contains "2tet")
o3x3/2o4o *b3x3*c - (contains "2oh")
o3o3/2x4x *b3o3*c - (contains "2tet")
o3o3/2x4o *b3x3*c - ript
o3o3/2o4x *b3x3*c - (contains "2tet")

x3x3/2x4o *b3o3*c - [Grünbaumian]
x3x3/2o4x *b3o3*c - (contains "2tet")
x3x3/2o4o *b3x3*c - (contains "2oh")
x3o3/2x4x *b3o3*c - (contains "2tet")
x3o3/2x4o *b3x3*c - (contains "2thah")
x3o3/2o4x *b3x3*c - (contains "2tet")
o3x3/2x4x *b3o3*c - [Grünbaumian]
o3x3/2x4o *b3x3*c - [Grünbaumian]
o3x3/2o4x *b3x3*c - gokvactaden
o3o3/2x4x *b3x3*c - sorcpit

x3x3/2x4x *b3o3*c - [Grünbaumian]
x3x3/2x4o *b3x3*c - [Grünbaumian]
x3x3/2o4x *b3x3*c - gacdincat
x3o3/2x4x *b3x3*c - (contains "2thah")
o3x3/2x4x *b3x3*c - [Grünbaumian]

x3x3/2x4x *b3x3*c - [Grünbaumian]
x3o3/2o4/3o *b3o3*c - (contains "2pen")
o3x3/2o4/3o *b3o3*c - (contains "2tet")
o3o3/2x4/3o *b3o3*c - (contains "2tet")
o3o3/2o4/3x *b3o3*c - (contains "2tes")
o3o3/2o4/3o *b3x3*c - (contains "2tet")

x3x3/2o4/3o *b3o3*c - (contains "2tet")
x3o3/2x4/3o *b3o3*c - (contains "2tet")
x3o3/2o4/3x *b3o3*c - (contains "2pen")
x3o3/2o4/3o *b3x3*c - (contains "2tet")
o3x3/2x4/3o *b3o3*c - [Grünbaumian]
o3x3/2o4/3x *b3o3*c - (contains "2tet")
o3x3/2o4/3o *b3x3*c - (contains "2oh")
o3o3/2x4/3x *b3o3*c - (contains "2tet")
o3o3/2x4/3o *b3x3*c - ript
o3o3/2o4/3x *b3x3*c - (contains "2tet")

x3x3/2x4/3o *b3o3*c - [Grünbaumian]
x3x3/2o4/3x *b3o3*c - (contains "2tet")
x3x3/2o4/3o *b3x3*c - (contains "2oh")
x3o3/2x4/3x *b3o3*c - (contains "2tet")
x3o3/2x4/3o *b3x3*c - (contains "2thah")
x3o3/2o4/3x *b3x3*c - (contains "2tet")
o3x3/2x4/3x *b3o3*c - [Grünbaumian]
o3x3/2x4/3o *b3x3*c - [Grünbaumian]
o3x3/2o4/3x *b3x3*c - skovactaden
o3o3/2x4/3x *b3x3*c - gorcpit

x3x3/2x4/3x *b3o3*c - [Grünbaumian]
x3x3/2x4/3o *b3x3*c - [Grünbaumian]
x3x3/2o4/3x *b3x3*c - scadnicat
x3o3/2x4/3x *b3x3*c - (contains "2thah")
o3x3/2x4/3x *b3x3*c - [Grünbaumian]

x3x3/2x4/3x *b3x3*c - [Grünbaumian]
x3/2o3/2o4o *b3o3*c - (contains "2pen")
o3/2x3/2o4o *b3o3*c - (contains "2tet")
o3/2o3/2x4o *b3o3*c - (contains "2tet")
o3/2o3/2o4x *b3o3*c - (contains "2tes")
o3/2o3/2o4o *b3x3*c - (contains "2tet")

x3/2x3/2o4o *b3o3*c - [Grünbaumian]
x3/2o3/2x4o *b3o3*c - (contains "2tet")
x3/2o3/2o4x *b3o3*c - (contains "2pen")
x3/2o3/2o4o *b3x3*c - (contains "2tet")
o3/2x3/2x4o *b3o3*c - [Grünbaumian]
o3/2x3/2o4x *b3o3*c - (contains "2tet")
o3/2x3/2o4o *b3x3*c - (contains "2oh")
o3/2o3/2x4x *b3o3*c - (contains "2tet")
o3/2o3/2x4o *b3x3*c - ript
o3/2o3/2o4x *b3x3*c - (contains "2tet")

x3/2x3/2x4o *b3o3*c - [Grünbaumian]
x3/2x3/2o4x *b3o3*c - [Grünbaumian]
x3/2x3/2o4o *b3x3*c - [Grünbaumian]
x3/2o3/2x4x *b3o3*c - (contains "2tet")
x3/2o3/2x4o *b3x3*c - (contains "2thah")
x3/2o3/2o4x *b3x3*c - (contains "2tet")
o3/2x3/2x4x *b3o3*c - [Grünbaumian]
o3/2x3/2x4o *b3x3*c - [Grünbaumian]
o3/2x3/2o4x *b3x3*c - gokvactaden
o3/2o3/2x4x *b3x3*c - sorcpit

x3/2x3/2x4x *b3o3*c - [Grünbaumian]
x3/2x3/2x4o *b3x3*c - [Grünbaumian]
x3/2x3/2o4x *b3x3*c - [Grünbaumian]
x3/2o3/2x4x *b3x3*c - (contains "2thah")
o3/2x3/2x4x *b3x3*c - [Grünbaumian]

x3/2x3/2x4x *b3x3*c - [Grünbaumian]
x3/2o3/2o4/3o *b3o3*c - (contains "2pen")
o3/2x3/2o4/3o *b3o3*c - (contains "2tet")
o3/2o3/2x4/3o *b3o3*c - (contains "2tet")
o3/2o3/2o4/3x *b3o3*c - (contains "2tes")
o3/2o3/2o4/3o *b3x3*c - (contains "2tet")

x3/2x3/2o4/3o *b3o3*c - [Grünbaumian]
x3/2o3/2x4/3o *b3o3*c - (contains "2tet")
x3/2o3/2o4/3x *b3o3*c - (contains "2pen")
x3/2o3/2o4/3o *b3x3*c - (contains "2tet")
o3/2x3/2x4/3o *b3o3*c - [Grünbaumian]
o3/2x3/2o4/3x *b3o3*c - (contains "2tet")
o3/2x3/2o4/3o *b3x3*c - (contains "2oh")
o3/2o3/2x4/3x *b3o3*c - (contains "2tet")
o3/2o3/2x4/3o *b3x3*c - ript
o3/2o3/2o4/3x *b3x3*c - (contains "2tet")

x3/2x3/2x4/3o *b3o3*c - [Grünbaumian]
x3/2x3/2o4/3x *b3o3*c - [Grünbaumian]
x3/2x3/2o4/3o *b3x3*c - [Grünbaumian]
x3/2o3/2x4/3x *b3o3*c - (contains "2tet")
x3/2o3/2x4/3o *b3x3*c - (contains "2thah")
x3/2o3/2o4/3x *b3x3*c - (contains "2tet")
o3/2x3/2x4/3x *b3o3*c - [Grünbaumian]
o3/2x3/2x4/3o *b3x3*c - [Grünbaumian]
o3/2x3/2o4/3x *b3x3*c - skovactaden
o3/2o3/2x4/3x *b3x3*c - gorcpit

x3/2x3/2x4/3x *b3o3*c - [Grünbaumian]
x3/2x3/2x4/3o *b3x3*c - [Grünbaumian]
x3/2x3/2o4/3x *b3x3*c - [Grünbaumian]
x3/2o3/2x4/3x *b3x3*c - (contains "2thah")
o3/2x3/2x4/3x *b3x3*c - [Grünbaumian]

x3/2x3/2x4/3x *b3x3*c - [Grünbaumian]
o3o3/2o4o *b3/2o3/2*c o3o3/2o4/3o *b3/2o3/2*c o3/2o3/2o4o *b3/2o3/2*c o3/2o3/2o4/3o *b3/2o3/2*c
x3o3/2o4o *b3/2o3/2*c - (contains "2pen")
o3x3/2o4o *b3/2o3/2*c - (contains "2tet")
o3o3/2x4o *b3/2o3/2*c - (contains "2tet")
o3o3/2o4x *b3/2o3/2*c - (contains "2tes")
o3o3/2o4o *b3/2x3/2*c - (contains "2tet")

x3x3/2o4o *b3/2o3/2*c - (contains "2tet")
x3o3/2x4o *b3/2o3/2*c - (contains "2tet")
x3o3/2o4x *b3/2o3/2*c - (contains "2pen")
x3o3/2o4o *b3/2x3/2*c - (contains "2tet")
o3x3/2x4o *b3/2o3/2*c - [Grünbaumian]
o3x3/2o4x *b3/2o3/2*c - (contains "2tet")
o3x3/2o4o *b3/2x3/2*c - [Grünbaumian]
o3o3/2x4x *b3/2o3/2*c - (contains "2tet")
o3o3/2x4o *b3/2x3/2*c - [Grünbaumian]
o3o3/2o4x *b3/2x3/2*c - (contains "2tet")

x3x3/2x4o *b3/2o3/2*c - [Grünbaumian]
x3x3/2o4x *b3/2o3/2*c - (contains "2tet")
x3x3/2o4o *b3/2x3/2*c - [Grünbaumian]
x3o3/2x4x *b3/2o3/2*c - (contains "2tet")
x3o3/2x4o *b3/2x3/2*c - [Grünbaumian]
x3o3/2o4x *b3/2x3/2*c - (contains "2tet")
o3x3/2x4x *b3/2o3/2*c - [Grünbaumian]
o3x3/2x4o *b3/2x3/2*c - [Grünbaumian]
o3x3/2o4x *b3/2x3/2*c - [Grünbaumian]
o3o3/2x4x *b3/2x3/2*c - [Grünbaumian]

x3x3/2x4x *b3/2o3/2*c - [Grünbaumian]
x3x3/2x4o *b3/2x3/2*c - [Grünbaumian]
x3x3/2o4x *b3/2x3/2*c - [Grünbaumian]
x3o3/2x4x *b3/2x3/2*c - [Grünbaumian]
o3x3/2x4x *b3/2x3/2*c - [Grünbaumian]

x3x3/2x4x *b3/2x3/2*c - [Grünbaumian]
x3o3/2o4/3o *b3/2o3/2*c - (contains "2pen")
o3x3/2o4/3o *b3/2o3/2*c - (contains "2tet")
o3o3/2x4/3o *b3/2o3/2*c - (contains "2tet")
o3o3/2o4/3x *b3/2o3/2*c - (contains "2tes")
o3o3/2o4/3o *b3/2x3/2*c - (contains "2tet")

x3x3/2o4/3o *b3/2o3/2*c - (contains "2tet")
x3o3/2x4/3o *b3/2o3/2*c - (contains "2tet")
x3o3/2o4/3x *b3/2o3/2*c - (contains "2pen")
x3o3/2o4/3o *b3/2x3/2*c - (contains "2tet")
o3x3/2x4/3o *b3/2o3/2*c - [Grünbaumian]
o3x3/2o4/3x *b3/2o3/2*c - (contains "2tet")
o3x3/2o4/3o *b3/2x3/2*c - [Grünbaumian]
o3o3/2x4/3x *b3/2o3/2*c - (contains "2tet")
o3o3/2x4/3o *b3/2x3/2*c - [Grünbaumian]
o3o3/2o4/3x *b3/2x3/2*c - (contains "2tet")

x3x3/2x4/3o *b3/2o3/2*c - [Grünbaumian]
x3x3/2o4/3x *b3/2o3/2*c - (contains "2tet")
x3x3/2o4/3o *b3/2x3/2*c - [Grünbaumian]
x3o3/2x4/3x *b3/2o3/2*c - (contains "2tet")
x3o3/2x4/3o *b3/2x3/2*c - [Grünbaumian]
x3o3/2o4/3x *b3/2x3/2*c - (contains "2tet")
o3x3/2x4/3x *b3/2o3/2*c - [Grünbaumian]
o3x3/2x4/3o *b3/2x3/2*c - [Grünbaumian]
o3x3/2o4/3x *b3/2x3/2*c - [Grünbaumian]
o3o3/2x4/3x *b3/2x3/2*c - [Grünbaumian]

x3x3/2x4/3x *b3/2o3/2*c - [Grünbaumian]
x3x3/2x4/3o *b3/2x3/2*c - [Grünbaumian]
x3x3/2o4/3x *b3/2x3/2*c - [Grünbaumian]
x3o3/2x4/3x *b3/2x3/2*c - [Grünbaumian]
o3x3/2x4/3x *b3/2x3/2*c - [Grünbaumian]

x3x3/2x4/3x *b3/2x3/2*c - [Grünbaumian]
x3/2o3/2o4o *b3/2o3/2*c - (contains "2pen")
o3/2x3/2o4o *b3/2o3/2*c - (contains "2tet")
o3/2o3/2x4o *b3/2o3/2*c - (contains "2tet")
o3/2o3/2o4x *b3/2o3/2*c - (contains "2tes")
o3/2o3/2o4o *b3/2x3/2*c - (contains "2tet")

x3/2x3/2o4o *b3/2o3/2*c - [Grünbaumian]
x3/2o3/2x4o *b3/2o3/2*c - (contains "2tet")
x3/2o3/2o4x *b3/2o3/2*c - (contains "2pen")
x3/2o3/2o4o *b3/2x3/2*c - (contains "2tet")
o3/2x3/2x4o *b3/2o3/2*c - [Grünbaumian]
o3/2x3/2o4x *b3/2o3/2*c - (contains "2tet")
o3/2x3/2o4o *b3/2x3/2*c - [Grünbaumian]
o3/2o3/2x4x *b3/2o3/2*c - (contains "2tet")
o3/2o3/2x4o *b3/2x3/2*c - [Grünbaumian]
o3/2o3/2o4x *b3/2x3/2*c - (contains "2tet")

x3/2x3/2x4o *b3/2o3/2*c - [Grünbaumian]
x3/2x3/2o4x *b3/2o3/2*c - [Grünbaumian]
x3/2x3/2o4o *b3/2x3/2*c - [Grünbaumian]
x3/2o3/2x4x *b3/2o3/2*c - (contains "2tet")
x3/2o3/2x4o *b3/2x3/2*c - [Grünbaumian]
x3/2o3/2o4x *b3/2x3/2*c - (contains "2tet")
o3/2x3/2x4x *b3/2o3/2*c - [Grünbaumian]
o3/2x3/2x4o *b3/2x3/2*c - [Grünbaumian]
o3/2x3/2o4x *b3/2x3/2*c - [Grünbaumian]
o3/2o3/2x4x *b3/2x3/2*c - [Grünbaumian]

x3/2x3/2x4x *b3/2o3/2*c - [Grünbaumian]
x3/2x3/2x4o *b3/2x3/2*c - [Grünbaumian]
x3/2x3/2o4x *b3/2x3/2*c - [Grünbaumian]
x3/2o3/2x4x *b3/2x3/2*c - [Grünbaumian]
o3/2x3/2x4x *b3/2x3/2*c - [Grünbaumian]

x3/2x3/2x4x *b3/2x3/2*c - [Grünbaumian]
x3/2o3/2o4/3o *b3/2o3/2*c - (contains "2pen")
o3/2x3/2o4/3o *b3/2o3/2*c - (contains "2tet")
o3/2o3/2x4/3o *b3/2o3/2*c - (contains "2tet")
o3/2o3/2o4/3x *b3/2o3/2*c - (contains "2tes")
o3/2o3/2o4/3o *b3/2x3/2*c - (contains "2tet")

x3/2x3/2o4/3o *b3/2o3/2*c - [Grünbaumian]
x3/2o3/2x4/3o *b3/2o3/2*c - (contains "2tet")
x3/2o3/2o4/3x *b3/2o3/2*c - (contains "2pen")
x3/2o3/2o4/3o *b3/2x3/2*c - (contains "2tet")
o3/2x3/2x4/3o *b3/2o3/2*c - [Grünbaumian]
o3/2x3/2o4/3x *b3/2o3/2*c - (contains "2tet")
o3/2x3/2o4/3o *b3/2x3/2*c - [Grünbaumian]
o3/2o3/2x4/3x *b3/2o3/2*c - (contains "2tet")
o3/2o3/2x4/3o *b3/2x3/2*c - [Grünbaumian]
o3/2o3/2o4/3x *b3/2x3/2*c - (contains "2tet")

x3/2x3/2x4/3o *b3/2o3/2*c - [Grünbaumian]
x3/2x3/2o4/3x *b3/2o3/2*c - [Grünbaumian]
x3/2x3/2o4/3o *b3/2x3/2*c - [Grünbaumian]
x3/2o3/2x4/3x *b3/2o3/2*c - (contains "2tet")
x3/2o3/2x4/3o *b3/2x3/2*c - [Grünbaumian]
x3/2o3/2o4/3x *b3/2x3/2*c - (contains "2tet")
o3/2x3/2x4/3x *b3/2o3/2*c - [Grünbaumian]
o3/2x3/2x4/3o *b3/2x3/2*c - [Grünbaumian]
o3/2x3/2o4/3x *b3/2x3/2*c - [Grünbaumian]
o3/2o3/2x4/3x *b3/2x3/2*c - [Grünbaumian]

x3/2x3/2x4/3x *b3/2o3/2*c - [Grünbaumian]
x3/2x3/2x4/3o *b3/2x3/2*c - [Grünbaumian]
x3/2x3/2o4/3x *b3/2x3/2*c - [Grünbaumian]
x3/2o3/2x4/3x *b3/2x3/2*c - [Grünbaumian]
o3/2x3/2x4/3x *b3/2x3/2*c - [Grünbaumian]

x3/2x3/2x4/3x *b3/2x3/2*c - [Grünbaumian]

Penteractic Symmetries – type o3o3o3o *b4o4/3*d   (up)

o3o3o3o *b4o4/3*c o3o3o3/2o *b4o4/3*c o3/2o3o3o *b4o4/3*c o3/2o3o3/2o *b4o4/3*c
x3o3o3o *b4o4/3*c - (contains "hex+8oct")
o3x3o3o *b4o4/3*c - (contains "oct+6{4}")
o3o3x3o *b4o4/3*c - (contains "oct+6{4}")
o3o3o3x *b4o4/3*c - (contains "hex+8oct")
o3o3o3o *b4x4/3*c - (contains "2cube")

x3x3o3o *b4o4/3*c - (contains "oct+6{4}")
x3o3x3o *b4o4/3*c - (contains "oct+6{4}")
x3o3o3x *b4o4/3*c - (contains "hex+8oct")
x3o3o3o *b4x4/3*c - (contains "2cube")
o3x3x3o *b4o4/3*c - (contains "2cho")
o3x3o3x *b4o4/3*c - (contains "oct+6{4}")
o3x3o3o *b4x4/3*c - sirpin
o3o3x3x *b4o4/3*c - (contains "oct+6{4}")
o3o3x3o *b4x4/3*c - fawdint
o3o3o3x *b4x4/3*c - (contains "2cube")

x3x3x3o *b4o4/3*c - (contains "2cho")
x3x3o3x *b4o4/3*c - (contains "oct+6{4}")
x3x3o3o *b4x4/3*c - setitdin
x3o3x3x *b4o4/3*c - (contains "oct+6{4}")
x3o3x3o *b4x4/3*c - gikvacadint
x3o3o3x *b4x4/3*c - (contains "2cube")
o3x3x3x *b4o4/3*c - (contains "2cho")
o3x3x3o *b4x4/3*c - danbitot
o3x3o3x *b4x4/3*c - sikvacadint
o3o3x3x *b4x4/3*c - getitdin

x3x3x3x *b4o4/3*c - (contains "2cho")
x3x3x3o *b4x4/3*c - gadinnert
x3x3o3x *b4x4/3*c - sidacadint
x3o3x3x *b4x4/3*c - gidacadint
o3x3x3x *b4x4/3*c - sadinnert

x3x3x3x *b4x4/3*c - danpit
x3o3o3/2o *b4o4/3*c - (contains "hex+8oct")
o3x3o3/2o *b4o4/3*c - (contains "oct+6{4}")
o3o3x3/2o *b4o4/3*c - (contains "oct+6{4}")
o3o3o3/2x *b4o4/3*c - (contains "hex+8oct")
o3o3o3/2o *b4x4/3*c - (contains "2cube")

x3x3o3/2o *b4o4/3*c - (contains "oct+6{4}")
x3o3x3/2o *b4o4/3*c - (contains "oct+6{4}")
x3o3o3/2x *b4o4/3*c - (contains "2firp")
x3o3o3/2o *b4x4/3*c - (contains "2cube")
o3x3x3/2o *b4o4/3*c - (contains "2cho")
o3x3o3/2x *b4o4/3*c - (contains "2thah")
o3x3o3/2o *b4x4/3*c - sirpin
o3o3x3/2x *b4o4/3*c - [Grünbaumian]
o3o3x3/2o *b4x4/3*c - fawdint
o3o3o3/2x *b4x4/3*c - (contains "2cube")

x3x3x3/2o *b4o4/3*c - (contains "2cho")
x3x3o3/2x *b4o4/3*c - (contains "2thah")
x3x3o3/2o *b4x4/3*c - setitdin
x3o3x3/2x *b4o4/3*c - [Grünbaumian]
x3o3x3/2o *b4x4/3*c - gikvacadint
x3o3o3/2x *b4x4/3*c - (contains "2cube")
o3x3x3/2x *b4o4/3*c - [Grünbaumian]
o3x3x3/2o *b4x4/3*c - danbitot
o3x3o3/2x *b4x4/3*c - (contains "2thah")
o3o3x3/2x *b4x4/3*c - [Grünbaumian]

x3x3x3/2x *b4o4/3*c - (contains "2cho")
x3x3x3/2o *b4x4/3*c - gadinnert
x3x3o3/2x *b4x4/3*c - (contains "2thah")
x3o3x3/2x *b4x4/3*c - [Grünbaumian]
o3x3x3/2x *b4x4/3*c - [Grünbaumian]

x3x3x3/2x *b4x4/3*c - [Grünbaumian]
x3/2o3o3o *b4o4/3*c - (contains "hex+8oct")
o3/2x3o3o *b4o4/3*c - (contains "oct+6{4}")
o3/2o3x3o *b4o4/3*c - (contains "oct+6{4}")
o3/2o3o3x *b4o4/3*c - (contains "hex+8oct")
o3/2o3o3o *b4x4/3*c - (contains "2cube")

x3/2x3o3o *b4o4/3*c - [Grünbaumian]
x3/2o3x3o *b4o4/3*c - (contains "2thah")
x3/2o3o3x *b4o4/3*c - (contains "2firp")
x3/2o3o3o *b4x4/3*c - (contains "2cube")
o3/2x3x3o *b4o4/3*c - (contains "2cho")
o3/2x3o3x *b4o4/3*c - (contains "oct+6{4}")
o3/2x3o3o *b4x4/3*c - sirpin
o3/2o3x3x *b4o4/3*c - (contains "oct+6{4}")
o3/2o3x3o *b4x4/3*c - fawdint
o3/2o3o3x *b4x4/3*c - (contains "2cube")

x3/2x3x3o *b4o4/3*c - [Grünbaumian]
x3/2x3o3x *b4o4/3*c - [Grünbaumian]
x3/2x3o3o *b4x4/3*c - [Grünbaumian]
x3/2o3x3x *b4o4/3*c - (contains "2thah")
x3/2o3x3o *b4x4/3*c - (contains "2thah")
x3/2o3o3x *b4x4/3*c - (contains "2cube")
o3/2x3x3x *b4o4/3*c - (contains "2cho")
o3/2x3x3o *b4x4/3*c - danbitot
o3/2x3o3x *b4x4/3*c - sikvacadint
o3/2o3x3x *b4x4/3*c - getitdin

x3/2x3x3x *b4o4/3*c - [Grünbaumian]
x3/2x3x3o *b4x4/3*c - [Grünbaumian]
x3/2x3o3x *b4x4/3*c - [Grünbaumian]
x3/2o3x3x *b4x4/3*c - (contains "2thah")
o3/2x3x3x *b4x4/3*c - sadinnert

x3/2x3x3x *b4x4/3*c - [Grünbaumian]
x3/2o3o3/2o *b4o4/3*c - (contains "hex+8oct")
o3/2x3o3/2o *b4o4/3*c - (contains "oct+6{4}")
o3/2o3x3/2o *b4o4/3*c - (contains "oct+6{4}")
o3/2o3o3/2x *b4o4/3*c - (contains "hex+8oct")
o3/2o3o3/2o *b4x4/3*c - (contains "2cube")

x3/2x3o3/2o *b4o4/3*c - [Grünbaumian]
x3/2o3x3/2o *b4o4/3*c - (contains "2thah")
x3/2o3o3/2x *b4o4/3*c - (contains "hex+8oct")
x3/2o3o3/2o *b4x4/3*c - (contains "2cube")
o3/2x3x3/2o *b4o4/3*c - (contains "2cho")
o3/2x3o3/2x *b4o4/3*c - (contains "2thah")
o3/2x3o3/2o *b4x4/3*c - sirpin
o3/2o3x3/2x *b4o4/3*c - [Grünbaumian]
o3/2o3x3/2o *b4x4/3*c - fawdint
o3/2o3o3/2x *b4x4/3*c - (contains "2cube")

x3/2x3x3/2o *b4o4/3*c - [Grünbaumian]
x3/2x3o3/2x *b4o4/3*c - [Grünbaumian]
x3/2x3o3/2o *b4x4/3*c - [Grünbaumian]
x3/2o3x3/2x *b4o4/3*c - [Grünbaumian]
x3/2o3x3/2o *b4x4/3*c - (contains "2thah")
x3/2o3o3/2x *b4x4/3*c - (contains "2cube")
o3/2x3x3/2x *b4o4/3*c - [Grünbaumian]
o3/2x3x3/2o *b4x4/3*c - danbitot
o3/2x3o3/2x *b4x4/3*c - (contains "2thah")
o3/2o3x3/2x *b4x4/3*c - [Grünbaumian]

x3/2x3x3/2x *b4o4/3*c - [Grünbaumian]
x3/2x3x3/2o *b4x4/3*c - [Grünbaumian]
x3/2x3o3/2x *b4x4/3*c - [Grünbaumian]
x3/2o3x3/2x *b4x4/3*c - [Grünbaumian]
o3/2x3x3/2x *b4x4/3*c - [Grünbaumian]

x3/2x3x3/2x *b4x4/3*c - [Grünbaumian]
o3o3/2o3o *b4o4*c o3o3/2o3/2o *b4o4*c o3/2o3/2o3/2o *b4o4*c  
x3o3/2o3o *b4o4*c - (contains "hex+8oct")
o3x3/2o3o *b4o4*c - (contains "oct+6{4}")


o3o3/2o3o *b4x4*c - (contains "2cube")

x3x3/2o3o *b4o4*c - (contains "oct+6{4}")
x3o3/2x3o *b4o4*c - (contains "2thah")
x3o3/2o3x *b4o4*c - (contains "2firp")
x3o3/2o3o *b4x4*c - (contains "2cube")
o3x3/2x3o *b4o4*c - [Grünbaumian]

o3x3/2o3o *b4x4*c - sirpin




x3x3/2x3o *b4o4*c - [Grünbaumian]
x3x3/2o3x *b4o4*c - (contains "2thah")
x3x3/2o3o *b4x4*c - setitdin

x3o3/2x3o *b4x4*c - (contains "2thah")
x3o3/2o3x *b4x4*c - (contains "2cube")

o3x3/2x3o *b4x4*c - [Grünbaumian]



x3x3/2x3x *b4o4*c - [Grünbaumian]
x3x3/2x3o *b4x4*c - [Grünbaumian]
x3x3/2o3x *b4x4*c - (contains "2thah")



x3x3/2x3x *b4x4*c - [Grünbaumian]
x3o3/2o3/2o *b4o4*c - (contains "hex+8oct")
o3x3/2o3/2o *b4o4*c - (contains "oct+6{4}")
o3o3/2x3/2o *b4o4*c - (contains "oct+6{4}")
o3o3/2o3/2x *b4o4*c - (contains "hex+8oct")
o3o3/2o3/2o *b4x4*c - (contains "2cube")

x3x3/2o3/2o *b4o4*c - (contains "oct+6{4}")
x3o3/2x3/2o *b4o4*c - (contains "2thah")
x3o3/2o3/2x *b4o4*c - (contains "hex+8oct")
x3o3/2o3/2o *b4x4*c - (contains "2cube")
o3x3/2x3/2o *b4o4*c - [Grünbaumian]
o3x3/2o3/2x *b4o4*c - (contains "oct+6{4}")
o3x3/2o3/2o *b4x4*c - sirpin
o3o3/2x3/2x *b4o4*c - [Grünbaumian]
o3o3/2x3/2o *b4x4*c - sirpin
o3o3/2o3/2x *b4x4*c - (contains "2cube")

x3x3/2x3/2o *b4o4*c - [Grünbaumian]
x3x3/2o3/2x *b4o4*c - (contains "oct+6{4}")
x3x3/2o3/2o *b4x4*c - setitdin
x3o3/2x3/2x *b4o4*c - [Grünbaumian]
x3o3/2x3/2o *b4x4*c - (contains "2thah")
x3o3/2o3/2x *b4x4*c - (contains "2cube")
o3x3/2x3/2x *b4o4*c - [Grünbaumian]
o3x3/2x3/2o *b4x4*c - [Grünbaumian]
o3x3/2o3/2x *b4x4*c - sikvacadint
o3o3/2x3/2x *b4x4*c - [Grünbaumian]

x3x3/2x3/2x *b4o4*c - [Grünbaumian]
x3x3/2x3/2o *b4x4*c - [Grünbaumian]
x3x3/2o3/2x *b4x4*c - sidacadint
x3o3/2x3/2x *b4x4*c - [Grünbaumian]
o3x3/2x3/2x *b4x4*c - [Grünbaumian]

x3x3/2x3/2x *b4x4*c - [Grünbaumian]
x3/2o3/2o3/2o *b4o4*c - (contains "hex+8oct")
o3/2x3/2o3/2o *b4o4*c - (contains "oct+6{4}")


o3/2o3/2o3/2o *b4x4*c - (contains "2cube")

x3/2x3/2o3/2o *b4o4*c - [Grünbaumian]
x3/2o3/2x3/2o *b4o4*c - (contains "oct+6{4}")
x3/2o3/2o3/2x *b4o4*c - (contains "2firp")
x3/2o3/2o3/2o *b4x4*c - (contains "2cube")
o3/2x3/2x3/2o *b4o4*c - [Grünbaumian]

o3/2x3/2o3/2o *b4x4*c - sirpin




x3/2x3/2x3/2o *b4o4*c - [Grünbaumian]
x3/2x3/2o3/2x *b4o4*c - [Grünbaumian]
x3/2x3/2o3/2o *b4x4*c - [Grünbaumian]

x3/2o3/2x3/2o *b4x4*c - sikvacadint
x3/2o3/2o3/2x *b4x4*c - (contains "2cube")

o3/2x3/2x3/2o *b4x4*c - [Grünbaumian]



x3/2x3/2x3/2x *b4o4*c - [Grünbaumian]
x3/2x3/2x3/2o *b4x4*c - [Grünbaumian]
x3/2x3/2o3/2x *b4x4*c - [Grünbaumian]



x3/2x3/2x3/2x *b4x4*c - [Grünbaumian]
 
o3o3/2o3o *b4/3o4/3*c o3o3/2o3/2o *b4/3o4/3*c o3/2o3/2o3/2o *b4/3o4/3*c  
x3o3/2o3o *b4/3o4/3*c - (contains "hex+8oct")
o3x3/2o3o *b4/3o4/3*c - (contains "oct+6{4}")


o3o3/2o3o *b4/3x4/3*c - (contains "2cube")

x3x3/2o3o *b4/3o4/3*c - (contains "oct+6{4}")
x3o3/2x3o *b4/3o4/3*c - (contains "2thah")
x3o3/2o3x *b4/3o4/3*c - (contains "2firp")
x3o3/2o3o *b4/3x4/3*c - (contains "2cube")
o3x3/2x3o *b4/3o4/3*c - [Grünbaumian]

o3x3/2o3o *b4/3x4/3*c - fawdint




x3x3/2x3o *b4/3o4/3*c - [Grünbaumian]
x3x3/2o3x *b4/3o4/3*c - (contains "2thah")
x3x3/2o3o *b4/3x4/3*c - getitdin

x3o3/2x3o *b4/3x4/3*c - (contains "2thah")
x3o3/2o3x *b4/3x4/3*c - (contains "2cube")

o3x3/2x3o *b4/3x4/3*c - [Grünbaumian]



x3x3/2x3x *b4/3o4/3*c - [Grünbaumian]
x3x3/2x3o *b4/3x4/3*c - [Grünbaumian]
x3x3/2o3x *b4/3x4/3*c - (contains "2thah")



x3x3/2x3x *b4/3x4/3*c - [Grünbaumian]
x3o3/2o3/2o *b4/3o4/3*c - (contains "hex+8oct")
o3x3/2o3/2o *b4/3o4/3*c - (contains "oct+6{4}")
o3o3/2x3/2o *b4/3o4/3*c - (contains "oct+6{4}")
o3o3/2o3/2x *b4/3o4/3*c - (contains "hex+8oct")
o3o3/2o3/2o *b4/3x4/3*c - (contains "2cube")

x3x3/2o3/2o *b4/3o4/3*c - (contains "oct+6{4}")
x3o3/2x3/2o *b4/3o4/3*c - (contains "2thah")
x3o3/2o3/2x *b4/3o4/3*c - (contains "hex+8oct")
x3o3/2o3/2o *b4/3x4/3*c - (contains "2cube")
o3x3/2x3/2o *b4/3o4/3*c - [Grünbaumian]
o3x3/2o3/2x *b4/3o4/3*c - (contains "oct+6{4}")
o3x3/2o3/2o *b4/3x4/3*c - fawdint
o3o3/2x3/2x *b4/3o4/3*c - [Grünbaumian]
o3o3/2x3/2o *b4/3x4/3*c - fawdint
o3o3/2o3/2x *b4/3x4/3*c - (contains "2cube")

x3x3/2x3/2o *b4/3o4/3*c - [Grünbaumian]
x3x3/2o3/2x *b4/3o4/3*c - (contains "oct+6{4}")
x3x3/2o3/2o *b4/3x4/3*c - getitdin
x3o3/2x3/2x *b4/3o4/3*c - [Grünbaumian]
x3o3/2x3/2o *b4/3x4/3*c - (contains "2thah")
x3o3/2o3/2x *b4/3x4/3*c - (contains "2cube")
o3x3/2x3/2x *b4/3o4/3*c - [Grünbaumian]
o3x3/2x3/2o *b4/3x4/3*c - [Grünbaumian]
o3x3/2o3/2x *b4/3x4/3*c - gikvacadint
o3o3/2x3/2x *b4/3x4/3*c - [Grünbaumian]

x3x3/2x3/2x *b4/3o4/3*c - [Grünbaumian]
x3x3/2x3/2o *b4/3x4/3*c - [Grünbaumian]
x3x3/2o3/2x *b4/3x4/3*c - gidacadint
x3o3/2x3/2x *b4/3x4/3*c - [Grünbaumian]
o3x3/2x3/2x *b4/3x4/3*c - [Grünbaumian]

x3x3/2x3/2x *b4/3x4/3*c - [Grünbaumian]
x3/2o3/2o3/2o *b4/3o4/3*c - (contains "hex+8oct")
o3/2x3/2o3/2o *b4/3o4/3*c - (contains "oct+6{4}")


o3/2o3/2o3/2o *b4/3x4/3*c - (contains "2cube")

x3/2x3/2o3/2o *b4/3o4/3*c - [Grünbaumian]
x3/2o3/2x3/2o *b4/3o4/3*c - (contains "oct+6{4}")
x3/2o3/2o3/2x *b4/3o4/3*c - (contains "2firp")
x3/2o3/2o3/2o *b4/3x4/3*c - (contains "2cube")
o3/2x3/2x3/2o *b4/3o4/3*c - [Grünbaumian]

o3/2x3/2o3/2o *b4/3x4/3*c - fawdint




x3/2x3/2x3/2o *b4/3o4/3*c - [Grünbaumian]
x3/2x3/2o3/2x *b4/3o4/3*c - [Grünbaumian]
x3/2x3/2o3/2o *b4/3x4/3*c - [Grünbaumian]

x3/2o3/2x3/2o *b4/3x4/3*c - gikvacadint
x3/2o3/2o3/2x *b4/3x4/3*c - (contains "2cube")

o3/2x3/2x3/2o *b4/3x4/3*c - [Grünbaumian]



x3/2x3/2x3/2x *b4/3o4/3*c - [Grünbaumian]
x3/2x3/2x3/2o *b4/3x4/3*c - [Grünbaumian]
x3/2x3/2o3/2x *b4/3x4/3*c - [Grünbaumian]



x3/2x3/2x3/2x *b4/3x4/3*c - [Grünbaumian]
 



two legged ones
  o-P-o-Q-o-R-o-S-*b-T-o  = 
                            
    o_             _o       
       -P_     _Q-  |       
           >o<      | R     
       _T-     -S_  |       
    o-             -o       

Within spherical space this type of Dynkin diagrams allows for P,Q,R,S,T all being either 3 or 3/2 only, while the loop, when considered alone, allows for an odd amount of 3/2 only.


Demipenteractic Symmetries   (up)

Clearly, if both the link marks of both legs as well as those of the loop, each together with those of the node decorations, provide an additional symmetry of the diagram, then the resulting polyteron likewise will have a further symmetry. Hence those polytera then will be re-found in the (full) penteractic symmetry as well.

o3o3o3o3/2*b3o o3o3o3/2o3*b3o o3o3/2o3/2o3/2*b3o
x3o3o3o3/2*b3o - (contains "2pen")
o3x3o3o3/2*b3o - (contains "2tet")
o3o3x3o3/2*b3o - (contains "2tet")
o3o3o3x3/2*b3o - (contains "2tet")

x3x3o3o3/2*b3o - (contains "2tet")
x3o3x3o3/2*b3o - (contains "2tet")
x3o3o3x3/2*b3o - (contains "2tet")
x3o3o3o3/2*b3x - (contains "2pen")
o3x3x3o3/2*b3o - rawt
o3x3o3x3/2*b3o - [Grünbaumian]
o3o3x3x3/2*b3o - "2rinhit"

x3x3x3o3/2*b3o - ripthin
x3x3o3x3/2*b3o - [Grünbaumian]
x3x3o3o3/2*b3x - (contains "2tet")
x3o3x3x3/2*b3o - (contains "2thah")
x3o3x3o3/2*b3x - (contains "2tet")
x3o3o3x3/2*b3x - (contains "2tet")
o3x3x3x3/2*b3o - [Grünbaumian]

x3x3x3x3/2*b3o - [Grünbaumian]
x3x3x3o3/2*b3x - repirt
x3x3o3x3/2*b3x - [Grünbaumian]
x3o3x3x3/2*b3x - (contains "2thah")

x3x3x3x3/2*b3x - [Grünbaumian]
x3o3o3/2o3*b3o - (contains "2pen")
o3x3o3/2o3*b3o - (contains "2tet")
o3o3x3/2o3*b3o - (contains "2tet")


x3x3o3/2o3*b3o - (contains "2tet")
x3o3x3/2o3*b3o - (contains "2tet")

x3o3o3/2o3*b3x - (contains "2pen")
o3x3x3/2o3*b3o - rawt

o3o3x3/2x3*b3o - [Grünbaumian]

x3x3x3/2o3*b3o - ripthin

x3x3o3/2o3*b3x - (contains "2tet")
x3o3x3/2x3*b3o - [Grünbaumian]
x3o3x3/2o3*b3x - (contains "2tet")

o3x3x3/2x3*b3o - [Grünbaumian]

x3x3x3/2x3*b3o - [Grünbaumian]
x3x3x3/2o3*b3x - repirt

x3o3x3/2x3*b3x - [Grünbaumian]

x3x3x3/2x3*b3x - [Grünbaumian]
x3o3/2o3/2o3/2*b3o - (contains "2pen")
o3x3/2o3/2o3/2*b3o - (contains "2tet")
o3o3/2x3/2o3/2*b3o - (contains "2tet")


x3x3/2o3/2o3/2*b3o - (contains "2tet")
x3o3/2x3/2o3/2*b3o - (contains "2tet")

x3o3/2o3/2o3/2*b3x - (contains "2pen")
o3x3/2x3/2o3/2*b3o - [Grünbaumian]

o3o3/2x3/2x3/2*b3o - [Grünbaumian]

x3x3/2x3/2o3/2*b3o - [Grünbaumian]

x3x3/2o3/2o3/2*b3x - (contains "2tet")
x3o3/2x3/2x3/2*b3o - [Grünbaumian]
x3o3/2x3/2o3/2*b3x - (contains "2tet")

o3x3/2x3/2x3/2*b3o - [Grünbaumian]

x3x3/2x3/2x3/2*b3o - [Grünbaumian]
x3x3/2x3/2o3/2*b3x - [Grünbaumian]

x3o3/2x3/2x3/2*b3x - [Grünbaumian]

x3x3/2x3/2x3/2*b3x - [Grünbaumian]
o3o3o3o3/2*b3/2o o3o3o3/2o3*b3/2o o3o3/2o3/2o3/2*b3/2o
x3o3o3o3/2*b3/2o - (contains "2pen")
o3x3o3o3/2*b3/2o - (contains "2tet")
o3o3x3o3/2*b3/2o - (contains "2tet")
o3o3o3x3/2*b3/2o - (contains "2tet")
o3o3o3o3/2*b3/2x - (contains "2pen")

x3x3o3o3/2*b3/2o - (contains "2tet")
x3o3x3o3/2*b3/2o - (contains "2tet")
x3o3o3x3/2*b3/2o - (contains "2tet")
x3o3o3o3/2*b3/2x - (contains "2pen")
o3x3x3o3/2*b3/2o - rawt
o3x3o3x3/2*b3/2o - [Grünbaumian]
o3x3o3o3/2*b3/2x - [Grünbaumian]
o3o3x3x3/2*b3/2o - "2rinhit"
o3o3x3o3/2*b3/2x - (contains "2tet")
o3o3o3x3/2*b3/2x - (contains "2tet")

x3x3x3o3/2*b3/2o - ripthin
x3x3o3x3/2*b3/2o - [Grünbaumian]
x3x3o3o3/2*b3/2x - [Grünbaumian]
x3o3x3x3/2*b3/2o - (contains "2thah")
x3o3x3o3/2*b3/2x - (contains "2tet")
x3o3o3x3/2*b3/2x - (contains "2tet")
o3x3x3x3/2*b3/2o - [Grünbaumian]
o3x3x3o3/2*b3/2x - [Grünbaumian]
o3x3o3x3/2*b3/2x - [Grünbaumian]
o3o3x3x3/2*b3/2x - (contains "2thah")

x3x3x3x3/2*b3/2o - [Grünbaumian]
x3x3x3o3/2*b3/2x - [Grünbaumian]
x3x3o3x3/2*b3/2x - [Grünbaumian]
x3o3x3x3/2*b3/2x - (contains "2thah")
o3x3x3x3/2*b3/2x - [Grünbaumian]

x3x3x3x3/2*b3/2x - [Grünbaumian]
x3o3o3/2o3*b3/2o - (contains "2pen")
o3x3o3/2o3*b3/2o - (contains "2tet")
o3o3x3/2o3*b3/2o - (contains "2tet")

o3o3o3/2o3*b3/2x - (contains "2pen")

x3x3o3/2o3*b3/2o - (contains "2tet")
x3o3x3/2o3*b3/2o - (contains "2tet")

x3o3o3/2o3*b3/2x - (contains "2pen")
o3x3x3/2o3*b3/2o - rawt

o3x3o3/2o3*b3/2x - [Grünbaumian]
o3o3x3/2x3*b3/2o - [Grünbaumian]



x3x3x3/2o3*b3/2o - ripthin

x3x3o3/2o3*b3/2x - [Grünbaumian]
x3o3x3/2x3*b3/2o - [Grünbaumian]
x3o3x3/2o3*b3/2x - (contains "2tet")

o3x3x3/2x3*b3/2o - [Grünbaumian]
o3x3x3/2o3*b3/2x - [Grünbaumian]

o3o3x3/2x3*b3/2x - [Grünbaumian]

x3x3x3/2x3*b3/2o - [Grünbaumian]
x3x3x3/2o3*b3/2x - [Grünbaumian]

x3o3x3/2x3*b3/2x - [Grünbaumian]
o3x3x3/2x3*b3/2x - [Grünbaumian]

x3x3x3/2x3*b3/2x - [Grünbaumian]
x3o3/2o3/2o3/2*b3/2o - (contains "2pen")
o3x3/2o3/2o3/2*b3/2o - (contains "2tet")
o3o3/2x3/2o3/2*b3/2o - (contains "2tet")

o3o3/2o3/2o3/2*b3/2x - (contains "2pen")

x3x3/2o3/2o3/2*b3/2o - (contains "2tet")
x3o3/2x3/2o3/2*b3/2o - (contains "2tet")

x3o3/2o3/2o3/2*b3/2x - (contains "2pen")
o3x3/2x3/2o3/2*b3/2o - [Grünbaumian]

o3x3/2o3/2o3/2*b3/2x - [Grünbaumian]
o3o3/2x3/2x3/2*b3/2o - [Grünbaumian]



x3x3/2x3/2o3/2*b3/2o - [Grünbaumian]

x3x3/2o3/2o3/2*b3/2x - [Grünbaumian]
x3o3/2x3/2x3/2*b3/2o - [Grünbaumian]
x3o3/2x3/2o3/2*b3/2x - (contains "2tet")

o3x3/2x3/2x3/2*b3/2o - [Grünbaumian]
o3x3/2x3/2o3/2*b3/2x - [Grünbaumian]

o3o3/2x3/2x3/2*b3/2x - [Grünbaumian]

x3x3/2x3/2x3/2*b3/2o - [Grünbaumian]
x3x3/2x3/2o3/2*b3/2x - [Grünbaumian]

x3o3/2x3/2x3/2*b3/2x - [Grünbaumian]
o3x3/2x3/2x3/2*b3/2x - [Grünbaumian]

x3x3/2x3/2x3/2*b3/2x - [Grünbaumian]
o3/2o3o3o3/2*b3/2o o3/2o3o3/2o3*b3/2o o3/2o3/2o3/2o3/2*b3/2o
x3/2o3o3o3/2*b3/2o - (contains "2pen")
o3/2x3o3o3/2*b3/2o - (contains "2tet")
o3/2o3x3o3/2*b3/2o - (contains "2tet")
o3/2o3o3x3/2*b3/2o - (contains "2tet")

x3/2x3o3o3/2*b3/2o - [Grünbaumian]
x3/2o3x3o3/2*b3/2o - (contains "2tet")
x3/2o3o3x3/2*b3/2o - (contains "2tet")
x3/2o3o3o3/2*b3/2x - (contains "2pen")
o3/2x3x3o3/2*b3/2o - rawt
o3/2x3o3x3/2*b3/2o - [Grünbaumian]
o3/2o3x3x3/2*b3/2o - "2rinhit"

x3/2x3x3o3/2*b3/2o - [Grünbaumian]
x3/2x3o3x3/2*b3/2o - [Grünbaumian]
x3/2x3o3o3/2*b3/2x - [Grünbaumian]
x3/2o3x3x3/2*b3/2o - (contains "2thah")
x3/2o3x3o3/2*b3/2x - (contains "2tet")
x3/2o3o3x3/2*b3/2x - (contains "2tet")
o3/2x3x3x3/2*b3/2o - [Grünbaumian]

x3/2x3x3x3/2*b3/2o - [Grünbaumian]
x3/2x3x3o3/2*b3/2x - [Grünbaumian]
x3/2x3o3x3/2*b3/2x - [Grünbaumian]
x3/2o3x3x3/2*b3/2x - (contains "2thah")

x3/2x3x3x3/2*b3/2x - [Grünbaumian]
x3/2o3o3/2o3*b3/2o - (contains "2pen")
o3/2x3o3/2o3*b3/2o - (contains "2tet")
o3/2o3x3/2o3*b3/2o - (contains "2tet")


x3/2x3o3/2o3*b3/2o - [Grünbaumian]
x3/2o3x3/2o3*b3/2o - (contains "2tet")

x3/2o3o3/2o3*b3/2x - (contains "2pen")
o3/2x3x3/2o3*b3/2o - rawt

o3/2o3x3/2x3*b3/2o - [Grünbaumian]

x3/2x3x3/2o3*b3/2o - [Grünbaumian]

x3/2x3o3/2o3*b3/2x - [Grünbaumian]
x3/2o3x3/2x3*b3/2o - [Grünbaumian]
x3/2o3x3/2o3*b3/2x - (contains "2tet")

o3/2x3x3/2x3*b3/2o - [Grünbaumian]

x3/2x3x3/2x3*b3/2o - [Grünbaumian]
x3/2x3x3/2o3*b3/2x - [Grünbaumian]

x3/2o3x3/2x3*b3/2x - [Grünbaumian]

x3/2x3x3/2x3*b3/2x - [Grünbaumian]
x3/2o3/2o3/2o3/2*b3/2o - (contains "2pen")
o3/2x3/2o3/2o3/2*b3/2o - (contains "2tet")
o3/2o3/2x3/2o3/2*b3/2o - (contains "2tet")


x3/2x3/2o3/2o3/2*b3/2o - [Grünbaumian]
x3/2o3/2x3/2o3/2*b3/2o - (contains "2tet")

x3/2o3/2o3/2o3/2*b3/2x - (contains "2pen")
o3/2x3/2x3/2o3/2*b3/2o - [Grünbaumian]

o3/2o3/2x3/2x3/2*b3/2o - [Grünbaumian]

x3/2x3/2x3/2o3/2*b3/2o - [Grünbaumian]

x3/2x3/2o3/2o3/2*b3/2x - [Grünbaumian]
x3/2o3/2x3/2x3/2*b3/2o - [Grünbaumian]
x3/2o3/2x3/2o3/2*b3/2x - (contains "2tet")

o3/2x3/2x3/2x3/2*b3/2o - [Grünbaumian]

x3/2x3/2x3/2x3/2*b3/2o - [Grünbaumian]
x3/2x3/2x3/2o3/2*b3/2x - [Grünbaumian]

x3/2o3/2x3/2x3/2*b3/2x - [Grünbaumian]

x3/2x3/2x3/2x3/2*b3/2x - [Grünbaumian]


© 2004-2025
top of page