Acronym gadinnert
Name great dispenteractirhombated triacontaditeron
Field of sections
 ©
Circumradius sqrt[19+2 sqrt(2)]/2 = 2.336045
Vertex figure
 ©
Coordinates ((1+2 sqrt(2))/2, (1+sqrt(2))/2, (sqrt(2)-1)/2, (sqrt(2)-1)/2, 1/2)   & all permutations, all changes of sign
Colonel of regiment (is itself locally convex – no other uniform polyteral members)
Face vector 1920, 4800, 3760, 1080, 92
Confer
general polytopal classes:
Wythoffian polytera  
External
links
hedrondude   polytopewiki  

As abstract polytope gadinnert is isomorphic to sadinnert, thereby interchanging the roles of octagons and octagrams, resp. replacing stop by op, quith by tic, and girco by quitco, resp. replacing thaquitoth by thatoth, quithip by ticcup, and thatpath by thaquitpath.


Incidence matrix according to Dynkin symbol

o3x3x3x *b4/3x4*c

. . . .      .    | 1920 |    2   1   1   1 |   1   2   2   2   1   1   1 |   1   1  1   2  2   2  1 |  1  1  1  2
------------------+------+------------------+-----------------------------+--------------------------+------------
. x . .      .    |    2 | 1920   *   *   * |   1   1   1   1   0   0   0 |   1   1  1   1  1   1  0 |  1  1  1  1
. . x .      .    |    2 |    * 960   *   * |   0   2   0   0   1   1   0 |   1   0  0   2  2   0  1 |  1  1  0  2
. . . x      .    |    2 |    *   * 960   * |   0   0   2   0   1   0   1 |   0   1  0   2  0   2  1 |  1  0  1  2
. . . .      x    |    2 |    *   *   * 960 |   0   0   0   2   0   1   1 |   0   0  1   0  2   2  1 |  0  1  1  2
------------------+------+------------------+-----------------------------+--------------------------+------------
o3x . .      .    |    3 |    3   0   0   0 | 640   *   *   *   *   *   * |   1   1  1   0  0   0  0 |  1  1  1  0
. x3x .      .    |    6 |    3   3   0   0 |   * 640   *   *   *   *   * |   1   0  0   1  1   0  0 |  1  1  0  1
. x . x      .    |    4 |    2   0   2   0 |   *   * 960   *   *   *   * |   0   1  0   1  0   1  0 |  1  0  1  1
. x . . *b4/3x    |    8 |    4   0   0   4 |   *   *   * 480   *   *   * |   0   0  1   0  1   1  0 |  0  1  1  1
. . x3x      .    |    6 |    0   3   3   0 |   *   *   *   * 320   *   * |   0   0  0   2  0   0  1 |  1  0  0  2
. . x .      x4*c |    8 |    0   4   0   4 |   *   *   *   *   * 240   * |   0   0  0   0  2   0  1 |  0  1  0  2
. . . x      x    |    4 |    0   0   2   2 |   *   *   *   *   *   * 480 |   0   0  0   0  0   2  1 |  0  0  1  2
------------------+------+------------------+-----------------------------+--------------------------+------------
o3x3x .      .       12 |   12   6   0   0 |   4   4   0   0   0   0   0 | 160   *  *   *  *   *  * |  1  1  0  0
o3x . x      .        6 |    6   0   3   0 |   2   0   3   0   0   0   0 |   * 320  *   *  *   *  * |  1  0  1  0
o3x . . *b4/3x       24 |   24   0   0  12 |   8   0   0   6   0   0   0 |   *   * 80   *  *   *  * |  0  1  1  0
. x3x3x      .       24 |   12  12  12   0 |   0   4   6   0   4   0   0 |   *   *  * 160  *   *  * |  1  0  0  1
. x3x . *b4/3x4*c    48 |   24  24   0  24 |   0   8   0   6   0   6   0 |   *   *  *   * 80   *  * |  0  1  0  1
. x . x *b4/3x       16 |    8   0   8   8 |   0   0   4   2   0   0   4 |   *   *  *   *  * 240  * |  0  0  1  1
. . x3x      x4*c    48 |    0  24  24  24 |   0   0   0   0   8   6  12 |   *   *  *   *  *   * 40 |  0  0  0  2
------------------+------+------------------+-----------------------------+--------------------------+------------
o3x3x3x      .       60 |   60  30  30   0 |  20  20  30   0  10   0   0 |   5  10  0   5  0   0  0 | 32  *  *  *
o3x3x . *b4/3x4*c   192 |  192  96   0  96 |  64  64   0  48   0  24   0 |  16   0  8   0  8   0  0 |  * 10  *  *
o3x . x *b4/3x       48 |   48   0  24  24 |  16   0  24  12   0   0  12 |   0   8  2   0  0   6  0 |  *  * 40  *
. x3x3x *b4/3x4*c   384 |  192 192 192 192 |   0  64  96  48  64  48  96 |   0   0  0  16  8  24  8 |  *  *  * 10

© 2004-2024
top of page