Acronym | gadinnert |
Name | great dispenteractirhombated triacontaditeron |
Field of sections |
© |
Circumradius | sqrt[19+2 sqrt(2)]/2 = 2.336045 |
Vertex figure |
© |
Coordinates | ((1+2 sqrt(2))/2, (1+sqrt(2))/2, (sqrt(2)-1)/2, (sqrt(2)-1)/2, 1/2) & all permutations, all changes of sign |
Colonel of regiment | (is itself locally convex – no other uniform polyteral members) |
Face vector | 1920, 4800, 3760, 1080, 92 |
Confer |
|
External links |
As abstract polytope gadinnert is isomorphic to sadinnert, thereby interchanging the roles of octagons and octagrams, resp. replacing stop by op, quith by tic, and girco by quitco, resp. replacing thaquitoth by thatoth, quithip by ticcup, and thatpath by thaquitpath.
Incidence matrix according to Dynkin symbol
o3x3x3x *b4/3x4*c . . . . . | 1920 | 2 1 1 1 | 1 2 2 2 1 1 1 | 1 1 1 2 2 2 1 | 1 1 1 2 ------------------+------+------------------+-----------------------------+--------------------------+------------ . x . . . | 2 | 1920 * * * | 1 1 1 1 0 0 0 | 1 1 1 1 1 1 0 | 1 1 1 1 . . x . . | 2 | * 960 * * | 0 2 0 0 1 1 0 | 1 0 0 2 2 0 1 | 1 1 0 2 . . . x . | 2 | * * 960 * | 0 0 2 0 1 0 1 | 0 1 0 2 0 2 1 | 1 0 1 2 . . . . x | 2 | * * * 960 | 0 0 0 2 0 1 1 | 0 0 1 0 2 2 1 | 0 1 1 2 ------------------+------+------------------+-----------------------------+--------------------------+------------ o3x . . . | 3 | 3 0 0 0 | 640 * * * * * * | 1 1 1 0 0 0 0 | 1 1 1 0 . x3x . . | 6 | 3 3 0 0 | * 640 * * * * * | 1 0 0 1 1 0 0 | 1 1 0 1 . x . x . | 4 | 2 0 2 0 | * * 960 * * * * | 0 1 0 1 0 1 0 | 1 0 1 1 . x . . *b4/3x | 8 | 4 0 0 4 | * * * 480 * * * | 0 0 1 0 1 1 0 | 0 1 1 1 . . x3x . | 6 | 0 3 3 0 | * * * * 320 * * | 0 0 0 2 0 0 1 | 1 0 0 2 . . x . x4*c | 8 | 0 4 0 4 | * * * * * 240 * | 0 0 0 0 2 0 1 | 0 1 0 2 . . . x x | 4 | 0 0 2 2 | * * * * * * 480 | 0 0 0 0 0 2 1 | 0 0 1 2 ------------------+------+------------------+-----------------------------+--------------------------+------------ o3x3x . . ♦ 12 | 12 6 0 0 | 4 4 0 0 0 0 0 | 160 * * * * * * | 1 1 0 0 o3x . x . ♦ 6 | 6 0 3 0 | 2 0 3 0 0 0 0 | * 320 * * * * * | 1 0 1 0 o3x . . *b4/3x ♦ 24 | 24 0 0 12 | 8 0 0 6 0 0 0 | * * 80 * * * * | 0 1 1 0 . x3x3x . ♦ 24 | 12 12 12 0 | 0 4 6 0 4 0 0 | * * * 160 * * * | 1 0 0 1 . x3x . *b4/3x4*c ♦ 48 | 24 24 0 24 | 0 8 0 6 0 6 0 | * * * * 80 * * | 0 1 0 1 . x . x *b4/3x ♦ 16 | 8 0 8 8 | 0 0 4 2 0 0 4 | * * * * * 240 * | 0 0 1 1 . . x3x x4*c ♦ 48 | 0 24 24 24 | 0 0 0 0 8 6 12 | * * * * * * 40 | 0 0 0 2 ------------------+------+------------------+-----------------------------+--------------------------+------------ o3x3x3x . ♦ 60 | 60 30 30 0 | 20 20 30 0 10 0 0 | 5 10 0 5 0 0 0 | 32 * * * o3x3x . *b4/3x4*c ♦ 192 | 192 96 0 96 | 64 64 0 48 0 24 0 | 16 0 8 0 8 0 0 | * 10 * * o3x . x *b4/3x ♦ 48 | 48 0 24 24 | 16 0 24 12 0 0 12 | 0 8 2 0 0 6 0 | * * 40 * . x3x3x *b4/3x4*c ♦ 384 | 192 192 192 192 | 0 64 96 48 64 48 96 | 0 0 0 16 8 24 8 | * * * 10
© 2004-2025 | top of page |