Acronym sadinnert
Name small dispenteractirhombated triacontaditeron
Field of sections
 ©
Circumradius sqrt[19-2 sqrt(2)]/2 = 2.010695
Vertex figure
 ©
Coordinates ((1+sqrt(2))/2, (1+sqrt(2))/2, (sqrt(2)-1)/2, (2 sqrt(2)-1)/2, 1/2)   & all permutations, all changes of sign
Colonel of regiment (is itself locally convex – no other uniform polyteral members)
Face vector 1920, 4800, 3760, 1080, 92
Confer
general polytopal classes:
Wythoffian polytera  
External
links
hedrondude   polytopewiki  

As abstract polytope sadinnert is isomorphic to gadinnert, thereby interchanging the roles of octagons and octagrams, resp. replacing op by stop, tic by quith, and quitco by girco, resp. replacing thatoth by thaquitoth, ticcup by quithip, and thaquitpath by thatpath.


Incidence matrix according to Dynkin symbol

o3x3x3x *b4x4/3*c

. . . .    .      | 1920 |    2   1   1   1 |   1   2   2   2   1   1   1 |   1   1  1   2  2   2  1 |  1  1  1  2
------------------+------+------------------+-----------------------------+--------------------------+------------
. x . .    .      |    2 | 1920   *   *   * |   1   1   1   1   0   0   0 |   1   1  1   1  1   1  0 |  1  1  1  1
. . x .    .      |    2 |    * 960   *   * |   0   2   0   0   1   1   0 |   1   0  0   2  2   0  1 |  1  1  0  2
. . . x    .      |    2 |    *   * 960   * |   0   0   2   0   1   0   1 |   0   1  0   2  0   2  1 |  1  0  1  2
. . . .    x      |    2 |    *   *   * 960 |   0   0   0   2   0   1   1 |   0   0  1   0  2   2  1 |  0  1  1  2
------------------+------+------------------+-----------------------------+--------------------------+------------
o3x . .    .      |    3 |    3   0   0   0 | 640   *   *   *   *   *   * |   1   1  1   0  0   0  0 |  1  1  1  0
. x3x .    .      |    6 |    3   3   0   0 |   * 640   *   *   *   *   * |   1   0  0   1  1   0  0 |  1  1  0  1
. x . x    .      |    4 |    2   0   2   0 |   *   * 960   *   *   *   * |   0   1  0   1  0   1  0 |  1  0  1  1
. x . . *b4x      |    8 |    4   0   0   4 |   *   *   * 480   *   *   * |   0   0  1   0  1   1  0 |  0  1  1  1
. . x3x    .      |    6 |    0   3   3   0 |   *   *   *   * 320   *   * |   0   0  0   2  0   0  1 |  1  0  0  2
. . x .    x4/3*c |    8 |    0   4   0   4 |   *   *   *   *   * 240   * |   0   0  0   0  2   0  1 |  0  1  0  2
. . . x    x      |    4 |    0   0   2   2 |   *   *   *   *   *   * 480 |   0   0  0   0  0   2  1 |  0  0  1  2
------------------+------+------------------+-----------------------------+--------------------------+------------
o3x3x .    .         12 |   12   6   0   0 |   4   4   0   0   0   0   0 | 160   *  *   *  *   *  * |  1  1  0  0
o3x . x    .          6 |    6   0   3   0 |   2   0   3   0   0   0   0 |   * 320  *   *  *   *  * |  1  0  1  0
o3x . . *b4x         24 |   24   0   0  12 |   8   0   0   6   0   0   0 |   *   * 80   *  *   *  * |  0  1  1  0
. x3x3x    .         24 |   12  12  12   0 |   0   4   6   0   4   0   0 |   *   *  * 160  *   *  * |  1  0  0  1
. x3x . *b4x4/3*c    48 |   24  24   0  24 |   0   8   0   6   0   6   0 |   *   *  *   * 80   *  * |  0  1  0  1
. x . x *b4x         16 |    8   0   8   8 |   0   0   4   2   0   0   4 |   *   *  *   *  * 240  * |  0  0  1  1
. . x3x    x4/3*c    48 |    0  24  24  24 |   0   0   0   0   8   6  12 |   *   *  *   *  *   * 40 |  0  0  0  2
------------------+------+------------------+-----------------------------+--------------------------+------------
o3x3x3x    .         60 |   60  30  30   0 |  20  20  30   0  10   0   0 |   5  10  0   5  0   0  0 | 32  *  *  *
o3x3x . *b4x4/3*c   192 |  192  96   0  96 |  64  64   0  48   0  24   0 |  16   0  8   0  8   0  0 |  * 10  *  *
o3x . x *b4x         48 |   48   0  24  24 |  16   0  24  12   0   0  12 |   0   8  2   0  0   6  0 |  *  * 40  *
. x3x3x *b4x4/3*c   384 |  192 192 192 192 |   0  64  96  48  64  48  96 |   0   0  0  16  8  24  8 |  *  *  * 10

© 2004-2024
top of page