Acronym sadinnert Name small dispenteractirhombated triacontaditeron Field of sections ` ©` Circumradius sqrt[19-2 sqrt(2)]/2 = 2.010695 Vertex figure ` ©` Colonel of regiment (is itself locally convex – no other uniform polyteral members) Externallinks

As abstract polytope sadinnert is isomorphic to gadinnert, thereby interchanging the roles of octagons and octagrams, resp. replacing op by stop, tic by quith, and quitco by girco, resp. replacing thatoth by thaquitoth, ticcup by quithip, and thaquitpath by thatpath.

Incidence matrix according to Dynkin symbol

```o3x3x3x *b4x4/3*c

. . . .    .      | 1920 |    2   1   1   1 |   1   2   2   2   1   1   1 |   1   1  1   2  2   2  1 |  1  1  1  2
------------------+------+------------------+-----------------------------+--------------------------+------------
. x . .    .      |    2 | 1920   *   *   * |   1   1   1   1   0   0   0 |   1   1  1   1  1   1  0 |  1  1  1  1
. . x .    .      |    2 |    * 960   *   * |   0   2   0   0   1   1   0 |   1   0  0   2  2   0  1 |  1  1  0  2
. . . x    .      |    2 |    *   * 960   * |   0   0   2   0   1   0   1 |   0   1  0   2  0   2  1 |  1  0  1  2
. . . .    x      |    2 |    *   *   * 960 |   0   0   0   2   0   1   1 |   0   0  1   0  2   2  1 |  0  1  1  2
------------------+------+------------------+-----------------------------+--------------------------+------------
o3x . .    .      |    3 |    3   0   0   0 | 640   *   *   *   *   *   * |   1   1  1   0  0   0  0 |  1  1  1  0
. x3x .    .      |    6 |    3   3   0   0 |   * 640   *   *   *   *   * |   1   0  0   1  1   0  0 |  1  1  0  1
. x . x    .      |    4 |    2   0   2   0 |   *   * 960   *   *   *   * |   0   1  0   1  0   1  0 |  1  0  1  1
. x . . *b4x      |    8 |    4   0   0   4 |   *   *   * 480   *   *   * |   0   0  1   0  1   1  0 |  0  1  1  1
. . x3x    .      |    6 |    0   3   3   0 |   *   *   *   * 320   *   * |   0   0  0   2  0   0  1 |  1  0  0  2
. . x .    x4/3*c |    8 |    0   4   0   4 |   *   *   *   *   * 240   * |   0   0  0   0  2   0  1 |  0  1  0  2
. . . x    x      |    4 |    0   0   2   2 |   *   *   *   *   *   * 480 |   0   0  0   0  0   2  1 |  0  0  1  2
------------------+------+------------------+-----------------------------+--------------------------+------------
o3x3x .    .      ♦   12 |   12   6   0   0 |   4   4   0   0   0   0   0 | 160   *  *   *  *   *  * |  1  1  0  0
o3x . x    .      ♦    6 |    6   0   3   0 |   2   0   3   0   0   0   0 |   * 320  *   *  *   *  * |  1  0  1  0
o3x . . *b4x      ♦   24 |   24   0   0  12 |   8   0   0   6   0   0   0 |   *   * 80   *  *   *  * |  0  1  1  0
. x3x3x    .      ♦   24 |   12  12  12   0 |   0   4   6   0   4   0   0 |   *   *  * 160  *   *  * |  1  0  0  1
. x3x . *b4x4/3*c ♦   48 |   24  24   0  24 |   0   8   0   6   0   6   0 |   *   *  *   * 80   *  * |  0  1  0  1
. x . x *b4x      ♦   16 |    8   0   8   8 |   0   0   4   2   0   0   4 |   *   *  *   *  * 240  * |  0  0  1  1
. . x3x    x4/3*c ♦   48 |    0  24  24  24 |   0   0   0   0   8   6  12 |   *   *  *   *  *   * 40 |  0  0  0  2
------------------+------+------------------+-----------------------------+--------------------------+------------
o3x3x3x    .      ♦   60 |   60  30  30   0 |  20  20  30   0  10   0   0 |   5  10  0   5  0   0  0 | 32  *  *  *
o3x3x . *b4x4/3*c ♦  192 |  192  96   0  96 |  64  64   0  48   0  24   0 |  16   0  8   0  8   0  0 |  * 10  *  *
o3x . x *b4x      ♦   48 |   48   0  24  24 |  16   0  24  12   0   0  12 |   0   8  2   0  0   6  0 |  *  * 40  *
. x3x3x *b4x4/3*c ♦  384 |  192 192 192 192 |   0  64  96  48  64  48  96 |   0   0  0  16  8  24  8 |  *  *  * 10
```