Acronym | sadinnert |
Name | small dispenteractirhombated triacontaditeron |
Field of sections |
© |
Circumradius | sqrt[19-2 sqrt(2)]/2 = 2.010695 |
Vertex figure |
© |
Coordinates | ((1+sqrt(2))/2, (1+sqrt(2))/2, (sqrt(2)-1)/2, (2 sqrt(2)-1)/2, 1/2) & all permutations, all changes of sign |
Colonel of regiment | (is itself locally convex – no other uniform polyteral members) |
Face vector | 1920, 4800, 3760, 1080, 92 |
Confer |
|
External links |
As abstract polytope sadinnert is isomorphic to gadinnert, thereby interchanging the roles of octagons and octagrams, resp. replacing op by stop, tic by quith, and quitco by girco, resp. replacing thatoth by thaquitoth, ticcup by quithip, and thaquitpath by thatpath.
Incidence matrix according to Dynkin symbol
o3x3x3x *b4x4/3*c . . . . . | 1920 | 2 1 1 1 | 1 2 2 2 1 1 1 | 1 1 1 2 2 2 1 | 1 1 1 2 ------------------+------+------------------+-----------------------------+--------------------------+------------ . x . . . | 2 | 1920 * * * | 1 1 1 1 0 0 0 | 1 1 1 1 1 1 0 | 1 1 1 1 . . x . . | 2 | * 960 * * | 0 2 0 0 1 1 0 | 1 0 0 2 2 0 1 | 1 1 0 2 . . . x . | 2 | * * 960 * | 0 0 2 0 1 0 1 | 0 1 0 2 0 2 1 | 1 0 1 2 . . . . x | 2 | * * * 960 | 0 0 0 2 0 1 1 | 0 0 1 0 2 2 1 | 0 1 1 2 ------------------+------+------------------+-----------------------------+--------------------------+------------ o3x . . . | 3 | 3 0 0 0 | 640 * * * * * * | 1 1 1 0 0 0 0 | 1 1 1 0 . x3x . . | 6 | 3 3 0 0 | * 640 * * * * * | 1 0 0 1 1 0 0 | 1 1 0 1 . x . x . | 4 | 2 0 2 0 | * * 960 * * * * | 0 1 0 1 0 1 0 | 1 0 1 1 . x . . *b4x | 8 | 4 0 0 4 | * * * 480 * * * | 0 0 1 0 1 1 0 | 0 1 1 1 . . x3x . | 6 | 0 3 3 0 | * * * * 320 * * | 0 0 0 2 0 0 1 | 1 0 0 2 . . x . x4/3*c | 8 | 0 4 0 4 | * * * * * 240 * | 0 0 0 0 2 0 1 | 0 1 0 2 . . . x x | 4 | 0 0 2 2 | * * * * * * 480 | 0 0 0 0 0 2 1 | 0 0 1 2 ------------------+------+------------------+-----------------------------+--------------------------+------------ o3x3x . . ♦ 12 | 12 6 0 0 | 4 4 0 0 0 0 0 | 160 * * * * * * | 1 1 0 0 o3x . x . ♦ 6 | 6 0 3 0 | 2 0 3 0 0 0 0 | * 320 * * * * * | 1 0 1 0 o3x . . *b4x ♦ 24 | 24 0 0 12 | 8 0 0 6 0 0 0 | * * 80 * * * * | 0 1 1 0 . x3x3x . ♦ 24 | 12 12 12 0 | 0 4 6 0 4 0 0 | * * * 160 * * * | 1 0 0 1 . x3x . *b4x4/3*c ♦ 48 | 24 24 0 24 | 0 8 0 6 0 6 0 | * * * * 80 * * | 0 1 0 1 . x . x *b4x ♦ 16 | 8 0 8 8 | 0 0 4 2 0 0 4 | * * * * * 240 * | 0 0 1 1 . . x3x x4/3*c ♦ 48 | 0 24 24 24 | 0 0 0 0 8 6 12 | * * * * * * 40 | 0 0 0 2 ------------------+------+------------------+-----------------------------+--------------------------+------------ o3x3x3x . ♦ 60 | 60 30 30 0 | 20 20 30 0 10 0 0 | 5 10 0 5 0 0 0 | 32 * * * o3x3x . *b4x4/3*c ♦ 192 | 192 96 0 96 | 64 64 0 48 0 24 0 | 16 0 8 0 8 0 0 | * 10 * * o3x . x *b4x ♦ 48 | 48 0 24 24 | 16 0 24 12 0 0 12 | 0 8 2 0 0 6 0 | * * 40 * . x3x3x *b4x4/3*c ♦ 384 | 192 192 192 192 | 0 64 96 48 64 48 96 | 0 0 0 16 8 24 8 | * * * 10
© 2004-2025 | top of page |