Site Map Polytopes Dynkin Diagrams Vertex Figures, etc. Incidence Matrices Index

---- 5D ----

This page is available sorted by point-group symmetry (below)
or by complexity (older version).


Terse Overview of Irreduzible Dynkin Graph Types

(For obvious reasons only the existing 4D graph types, which exist as subgroups in 5D as well, have to be extended here.)

Linear Tridental Loop & Tail
                             
                             
                             
  o--P--o--Q--o--R--o--S--o  
                             
                             
                             
 o-P-o-Q-o *b-R-o-S-o  = 
                         
  o_                     
     -P_                 
         >o--R--o--S--o  
     _Q-                 
  o-                     
 o-P-o-Q-o-R-o-S-o-T-*c  = 
                           
                     _o    
                 _R-  |    
  o--P--o--Q--o<      | S  
                 -T_  |    
                     -o    
 o-P-o-Q-o-R-o-S-o-T-*b  = 
                           
    o---P---o---Q---o      
            |       |      
            T       R      
            |       |      
            o---S---o      
Two Armed Two Legged Prolate Crossed Rhomb & Tail Oblate Crossed Rhomb & Tail
 o-P-o-Q-o-R-o *b-S-o-T-*c  = 
                              
     o--P--o--Q--o--R--o      
            \   /             
           S \ / T            
              o               
                              
  o-P-o-Q-o-R-o-S-*b-T-o  = 
                            
    o_             _o       
       -P_     _Q-  |       
           >o<      | R     
       _T-     -S_  |       
    o-             -o       
 o-P-o-Q-o-R-o-S-o-T-*b *c-U-*e  = 
                                   
      o---P---o---Q---o            
               \     / \           
                T   U   R          
                 \ /     \         
                  o---S---o        
 o-P-o-Q-o-R-o-S-o-T-*b-U-*d  = 
                                
      o---Q---o---P---o         
       \     / \                
        R   U   T               
         \ /     \              
          o---S---o             
Bowtie Loop House Three Looped
 o-P-o-Q-o-R-*a-S-o-T-o-U-*a  =
                               
       o_             _o       
       |  -P_     _U-  |       
     Q |      >o<      | T     
       |  _R-     -S_  |       
       o-             -o       
 o-P-o-Q-o-R-o-S-o-T-*a  =  
            _o_             
        _T-     -P_         
     o-             -o      
      \             /       
       S           Q        
        \         /         
         o---R---o          
 o-P-o-Q-o-R-o-S-o-T-*a-U-*c  = 
                                
      o---T---o_                
      |       |  -P_            
      S       U      >o         
      |       |  _Q-            
      o---R---o                 
 o-P-o-Q-o-R-*a-S-o-T-o-U-*a *c-V-*e =
                                      
          o---P---o---U---o           
           \     / \     /            
            Q   R   S   T             
             \ /     \ /              
              o---V---o               
Tetrahedron & Tail Others
 o-P-o-Q-o-R-o-S-o-T-*b-U-*d *c-V-*e =
                           _o         
                        _- /|         
                    _Q-   R |         
                 _-     /   |         
      o---P---o<---U---o    V         
                 -_     \   |         
                    -T_   S |         
                        -_ \|         
                           -o         

In the following symmetry listings "etc." means replacments according to 33/2, to 44/3, to 55/4, or to 5/25/3.

Polytera with Grünbaumian elements so far are not investigated any further. Those are Grünbaumian a priori, usually because of some subgraph -x-n/d-x-, where d is even. Others, which come out as being Grünbaumian a posteriori will be given none the less.




prolate crossed rhomb & tail ones
 o-P-o-Q-o-R-o-S-o-T-*b *c-U-*e  = 
                                   
      o---P---o---Q---o            
               \     / \           
                T   U   R          
                 \ /     \         
                  o---S---o        

Within spherical symmetry this type of Dynkin diagrams only allows for P,Q,R,S,T,U being 3 or 3/2 only. Furthermore in each loop only an odd amount of 3/2 marks is allowed.

Demipenteractic Symmetries   (up)

o3o3o3o3o3*b *c3/2*e o3/2o3o3o3o3*b *c3/2*e o3o3o3o3/2o3/2*b *c3*e o3/2o3o3o3/2o3/2*b *c3*e
x3o3o3o3o3*b *c3/2*e - (contains "2pen")
o3x3o3o3o3*b *c3/2*e - (contains "2tet")
o3o3x3o3o3*b *c3/2*e - (contains "2tet")
o3o3o3x3o3*b *c3/2*e - (contains "2tet")

x3x3o3o3o3*b *c3/2*e - (contains "2tet")
x3o3x3o3o3*b *c3/2*e - (contains "2tet")
x3o3o3x3o3*b *c3/2*e - (contains "2tet")
o3x3x3o3o3*b *c3/2*e - (contains "2tet")
o3x3o3x3o3*b *c3/2*e - (contains "2tet")
o3o3x3x3o3*b *c3/2*e - (contains "2tet")
o3o3x3o3x3*b *c3/2*e - [Grünbaumian]

x3x3x3o3o3*b *c3/2*e - (contains "2tet")
x3x3o3x3o3*b *c3/2*e - (contains "2tet")
x3o3x3x3o3*b *c3/2*e - (contains "2tet")
x3o3x3o3x3*b *c3/2*e - [Grünbaumian]
o3x3x3x3o3*b *c3/2*e - brewahen
o3x3x3o3x3*b *c3/2*e - [Grünbaumian]
o3o3x3x3x3*b *c3/2*e - [Grünbaumian]

x3x3x3x3o3*b *c3/2*e - ropith
x3x3x3o3x3*b *c3/2*e - [Grünbaumian]
x3o3x3x3x3*b *c3/2*e - [Grünbaumian]
o3x3x3x3x3*b *c3/2*e - [Grünbaumian]

x3x3x3x3x3*b *c3/2*e - [Grünbaumian]
x3/2o3o3o3o3*b *c3/2*e - (contains "2pen")
o3/2x3o3o3o3*b *c3/2*e - (contains "2tet")
o3/2o3x3o3o3*b *c3/2*e - (contains "2tet")
o3/2o3o3x3o3*b *c3/2*e - (contains "2tet")

x3/2x3o3o3o3*b *c3/2*e - [Grünbaumian]
x3/2o3x3o3o3*b *c3/2*e - (contains "2tet")
x3/2o3o3x3o3*b *c3/2*e - (contains "2tet")
o3/2x3x3o3o3*b *c3/2*e - (contains "2tet")
o3/2x3o3x3o3*b *c3/2*e - (contains "2tet")
o3/2o3x3x3o3*b *c3/2*e - (contains "2tet")
o3/2o3x3o3x3*b *c3/2*e - [Grünbaumian]

x3/2x3x3o3o3*b *c3/2*e - [Grünbaumian]
x3/2x3o3x3o3*b *c3/2*e - [Grünbaumian]
x3/2o3x3x3o3*b *c3/2*e - (contains "2tet")
x3/2o3x3o3x3*b *c3/2*e - [Grünbaumian]
o3/2x3x3x3o3*b *c3/2*e - brewahen
o3/2x3x3o3x3*b *c3/2*e - [Grünbaumian]
o3/2o3x3x3x3*b *c3/2*e - [Grünbaumian]

x3/2x3x3x3o3*b *c3/2*e - [Grünbaumian]
x3/2x3x3o3x3*b *c3/2*e - [Grünbaumian]
x3/2o3x3x3x3*b *c3/2*e - [Grünbaumian]
o3/2x3x3x3x3*b *c3/2*e - [Grünbaumian]

x3/2x3x3x3x3*b *c3/2*e - [Grünbaumian]
x3o3o3o3/2o3/2*b *c3*e - (contains "2pen")
o3x3o3o3/2o3/2*b *c3*e - (contains "2tet")
o3o3x3o3/2o3/2*b *c3*e - (contains "2tet")
o3o3o3x3/2o3/2*b *c3*e - (contains "2tet")
o3o3o3o3/2x3/2*b *c3*e - (contains "2tet")

x3x3o3o3/2o3/2*b *c3*e - (contains "2tet")
x3o3x3o3/2o3/2*b *c3*e - (contains "2tet")
x3o3o3x3/2o3/2*b *c3*e - (contains "2tet")
x3o3o3o3/2x3/2*b *c3*e - (contains "2tet")
o3x3x3o3/2o3/2*b *c3*e - (contains "2tet")
o3x3o3x3/2o3/2*b *c3*e - (contains "2tet")
o3x3o3o3/2x3/2*b *c3*e - [Grünbaumian]
o3o3x3x3/2o3/2*b *c3*e - (contains "2tet")
o3o3x3o3/2x3/2*b *c3*e - (contains "2oh")
o3o3o3x3/2x3/2*b *c3*e - [Grünbaumian]

x3x3x3o3/2o3/2*b *c3*e - (contains "2tet")
x3x3o3x3/2o3/2*b *c3*e - (contains "2tet")
x3x3o3o3/2x3/2*b *c3*e - [Grünbaumian]
x3o3x3x3/2o3/2*b *c3*e - (contains "2tet")
x3o3x3o3/2x3/2*b *c3*e - (contains "2thah")
x3o3o3x3/2x3/2*b *c3*e - [Grünbaumian]
o3x3x3x3/2o3/2*b *c3*e - brewahen
o3x3x3o3/2x3/2*b *c3*e - [Grünbaumian]
o3x3o3x3/2x3/2*b *c3*e - [Grünbaumian]
o3o3x3x3/2x3/2*b *c3*e - [Grünbaumian]

x3x3x3x3/2o3/2*b *c3*e - ropith
x3x3x3o3/2x3/2*b *c3*e - [Grünbaumian]
x3x3o3x3/2x3/2*b *c3*e - [Grünbaumian]
x3o3x3x3/2x3/2*b *c3*e - [Grünbaumian]
o3x3x3x3/2x3/2*b *c3*e - [Grünbaumian]

x3x3x3x3/2x3/2*b *c3*e - [Grünbaumian]
x3/2o3o3o3/2o3/2*b *c3*e - (contains "2pen")
o3/2x3o3o3/2o3/2*b *c3*e - (contains "2tet")
o3/2o3x3o3/2o3/2*b *c3*e - (contains "2tet")
o3/2o3o3x3/2o3/2*b *c3*e - (contains "2tet")
o3/2o3o3o3/2x3/2*b *c3*e - (contains "2tet")

x3/2x3o3o3/2o3/2*b *c3*e - [Grünbaumian]
x3/2o3x3o3/2o3/2*b *c3*e - (contains "2tet")
x3/2o3o3x3/2o3/2*b *c3*e - (contains "2tet")
x3/2o3o3o3/2x3/2*b *c3*e - (contains "2tet")
o3/2x3x3o3/2o3/2*b *c3*e - (contains "2tet")
o3/2x3o3x3/2o3/2*b *c3*e - (contains "2tet")
o3/2x3o3o3/2x3/2*b *c3*e - [Grünbaumian]
o3/2o3x3x3/2o3/2*b *c3*e - (contains "2tet")
o3/2o3x3o3/2x3/2*b *c3*e - (contains "2oh")
o3/2o3o3x3/2x3/2*b *c3*e - [Grünbaumian]

x3/2x3x3o3/2o3/2*b *c3*e - [Grünbaumian]
x3/2x3o3x3/2o3/2*b *c3*e - [Grünbaumian]
x3/2x3o3o3/2x3/2*b *c3*e - [Grünbaumian]
x3/2o3x3x3/2o3/2*b *c3*e - (contains "2tet")
x3/2o3x3o3/2x3/2*b *c3*e - (contains "2thah")
x3/2o3o3x3/2x3/2*b *c3*e - [Grünbaumian]
o3/2x3x3x3/2o3/2*b *c3*e - brewahen
o3/2x3x3o3/2x3/2*b *c3*e - [Grünbaumian]
o3/2x3o3x3/2x3/2*b *c3*e - [Grünbaumian]
o3/2o3x3x3/2x3/2*b *c3*e - [Grünbaumian]

x3/2x3x3x3/2o3/2*b *c3*e - [Grünbaumian]
x3/2x3x3o3/2x3/2*b *c3*e - [Grünbaumian]
x3/2x3o3x3/2x3/2*b *c3*e - [Grünbaumian]
x3/2o3x3x3/2x3/2*b *c3*e - [Grünbaumian]
o3/2x3x3x3/2x3/2*b *c3*e - [Grünbaumian]

x3/2x3x3x3/2x3/2*b *c3*e - [Grünbaumian]
o3o3o3/2o3o3/2*b *c3*e o3/2o3o3/2o3o3/2*b *c3*e o3o3o3/2o3/2o3*b *c3/2*e o3/2o3o3/2o3/2o3*b *c3/2*e
x3o3o3/2o3o3/2*b *c3*e - (contains "2pen")
o3x3o3/2o3o3/2*b *c3*e - (contains "2tet")
o3o3x3/2o3o3/2*b *c3*e - (contains "2tet")
o3o3o3/2x3o3/2*b *c3*e - (contains "2tet")
o3o3o3/2o3x3/2*b *c3*e - (contains "2tet")

x3x3o3/2o3o3/2*b *c3*e - (contains "2tet")
x3o3x3/2o3o3/2*b *c3*e - (contains "2tet")
x3o3o3/2x3o3/2*b *c3*e - (contains "2tet")
x3o3o3/2o3x3/2*b *c3*e - (contains "2tet")
o3x3x3/2o3o3/2*b *c3*e - (contains "2tet")
o3x3o3/2x3o3/2*b *c3*e - (contains "2tet")
o3x3o3/2o3x3/2*b *c3*e - [Grünbaumian]
o3o3x3/2x3o3/2*b *c3*e - [Grünbaumian]
o3o3x3/2o3x3/2*b *c3*e - (contains "2oh")
o3o3o3/2x3x3/2*b *c3*e - (contains "2tet")

x3x3x3/2o3o3/2*b *c3*e - (contains "2tet")
x3x3o3/2x3o3/2*b *c3*e - (contains "2tet")
x3x3o3/2o3x3/2*b *c3*e - [Grünbaumian]
x3o3x3/2x3o3/2*b *c3*e - [Grünbaumian]
x3o3x3/2o3x3/2*b *c3*e - (contains "2thah")
x3o3o3/2x3x3/2*b *c3*e - (contains "2tet")
o3x3x3/2x3o3/2*b *c3*e - [Grünbaumian]
o3x3x3/2o3x3/2*b *c3*e - [Grünbaumian]
o3x3o3/2x3x3/2*b *c3*e - [Grünbaumian]
o3o3x3/2x3x3/2*b *c3*e - [Grünbaumian]

x3x3x3/2x3o3/2*b *c3*e - [Grünbaumian]
x3x3x3/2o3x3/2*b *c3*e - [Grünbaumian]
x3x3o3/2x3x3/2*b *c3*e - [Grünbaumian]
x3o3x3/2x3x3/2*b *c3*e - [Grünbaumian]
o3x3x3/2x3x3/2*b *c3*e - [Grünbaumian]

x3x3x3/2x3x3/2*b *c3*e - [Grünbaumian]
x3/2o3o3/2o3o3/2*b *c3*e - (contains "2pen")
o3/2x3o3/2o3o3/2*b *c3*e - (contains "2tet")
o3/2o3x3/2o3o3/2*b *c3*e - (contains "2tet")
o3/2o3o3/2x3o3/2*b *c3*e - (contains "2tet")
o3/2o3o3/2o3x3/2*b *c3*e - (contains "2tet")

x3/2x3o3/2o3o3/2*b *c3*e - [Grünbaumian]
x3/2o3x3/2o3o3/2*b *c3*e - (contains "2tet")
x3/2o3o3/2x3o3/2*b *c3*e - (contains "2tet")
x3/2o3o3/2o3x3/2*b *c3*e - (contains "2tet")
o3/2x3x3/2o3o3/2*b *c3*e - (contains "2tet")
o3/2x3o3/2x3o3/2*b *c3*e - (contains "2tet")
o3/2x3o3/2o3x3/2*b *c3*e - [Grünbaumian]
o3/2o3x3/2x3o3/2*b *c3*e - [Grünbaumian]
o3/2o3x3/2o3x3/2*b *c3*e - (contains "2oh")
o3/2o3o3/2x3x3/2*b *c3*e - (contains "2tet")

x3/2x3x3/2o3o3/2*b *c3*e - [Grünbaumian]
x3/2x3o3/2x3o3/2*b *c3*e - [Grünbaumian]
x3/2x3o3/2o3x3/2*b *c3*e - [Grünbaumian]
x3/2o3x3/2x3o3/2*b *c3*e - [Grünbaumian]
x3/2o3x3/2o3x3/2*b *c3*e - (contains "2thah")
x3/2o3o3/2x3x3/2*b *c3*e - (contains "2tet")
o3/2x3x3/2x3o3/2*b *c3*e - [Grünbaumian]
o3/2x3x3/2o3x3/2*b *c3*e - [Grünbaumian]
o3/2x3o3/2x3x3/2*b *c3*e - [Grünbaumian]
o3/2o3x3/2x3x3/2*b *c3*e - [Grünbaumian]

x3/2x3x3/2x3o3/2*b *c3*e - [Grünbaumian]
x3/2x3x3/2o3x3/2*b *c3*e - [Grünbaumian]
x3/2x3o3/2x3x3/2*b *c3*e - [Grünbaumian]
x3/2o3x3/2x3x3/2*b *c3*e - [Grünbaumian]
o3/2x3x3/2x3x3/2*b *c3*e - [Grünbaumian]

x3/2x3x3/2x3x3/2*b *c3*e - [Grünbaumian]
x3o3o3/2o3/2o3*b *c3/2*e - (contains "2pen")
o3x3o3/2o3/2o3*b *c3/2*e - (contains "2tet")
o3o3x3/2o3/2o3*b *c3/2*e - (contains "2tet")
o3o3o3/2x3/2o3*b *c3/2*e - (contains "2tet")

x3x3o3/2o3/2o3*b *c3/2*e - (contains "2tet")
x3o3x3/2o3/2o3*b *c3/2*e - (contains "2tet")
x3o3o3/2x3/2o3*b *c3/2*e - (contains "2tet")
o3x3x3/2o3/2o3*b *c3/2*e - (contains "2tet")
o3x3o3/2x3/2o3*b *c3/2*e - (contains "2tet")
o3o3x3/2x3/2o3*b *c3/2*e - [Grünbaumian]
o3o3x3/2o3/2x3*b *c3/2*e - [Grünbaumian]

x3x3x3/2o3/2o3*b *c3/2*e - (contains "2tet")
x3x3o3/2x3/2o3*b *c3/2*e - (contains "2tet")
x3o3x3/2x3/2o3*b *c3/2*e - [Grünbaumian]
x3o3x3/2o3/2x3*b *c3/2*e - [Grünbaumian]
o3x3x3/2x3/2o3*b *c3/2*e - [Grünbaumian]
o3x3x3/2o3/2x3*b *c3/2*e - [Grünbaumian]
o3o3x3/2x3/2x3*b *c3/2*e - [Grünbaumian]

x3x3x3/2x3/2o3*b *c3/2*e - [Grünbaumian]
x3x3x3/2o3/2x3*b *c3/2*e - [Grünbaumian]
x3o3x3/2x3/2x3*b *c3/2*e - [Grünbaumian]
o3x3x3/2x3/2x3*b *c3/2*e - [Grünbaumian]

x3x3x3/2x3/2x3*b *c3/2*e - [Grünbaumian]
x3/2o3o3/2o3/2o3*b *c3/2*e - (contains "2pen")
o3/2x3o3/2o3/2o3*b *c3/2*e - (contains "2tet")
o3/2o3x3/2o3/2o3*b *c3/2*e - (contains "2tet")
o3/2o3o3/2x3/2o3*b *c3/2*e - (contains "2tet")

x3/2x3o3/2o3/2o3*b *c3/2*e - [Grünbaumian]
x3/2o3x3/2o3/2o3*b *c3/2*e - (contains "2tet")
x3/2o3o3/2x3/2o3*b *c3/2*e - (contains "2tet")
o3/2x3x3/2o3/2o3*b *c3/2*e - (contains "2tet")
o3/2x3o3/2x3/2o3*b *c3/2*e - (contains "2tet")
o3/2o3x3/2x3/2o3*b *c3/2*e - [Grünbaumian]
o3/2o3x3/2o3/2x3*b *c3/2*e - [Grünbaumian]

x3/2x3x3/2o3/2o3*b *c3/2*e - [Grünbaumian]
x3/2x3o3/2x3/2o3*b *c3/2*e - [Grünbaumian]
x3/2o3x3/2x3/2o3*b *c3/2*e - [Grünbaumian]
x3/2o3x3/2o3/2x3*b *c3/2*e - [Grünbaumian]
o3/2x3x3/2x3/2o3*b *c3/2*e - [Grünbaumian]
o3/2x3x3/2o3/2x3*b *c3/2*e - [Grünbaumian]
o3/2o3x3/2x3/2x3*b *c3/2*e - [Grünbaumian]

x3/2x3x3/2x3/2o3*b *c3/2*e - [Grünbaumian]
x3/2x3x3/2o3/2x3*b *c3/2*e - [Grünbaumian]
x3/2o3x3/2x3/2x3*b *c3/2*e - [Grünbaumian]
o3/2x3x3/2x3/2x3*b *c3/2*e - [Grünbaumian]

x3/2x3x3/2x3/2x3*b *c3/2*e - [Grünbaumian]
o3o3/2o3o3o3/2*b *c3/2*e o3/2o3/2o3o3o3/2*b *c3/2*e o3o3/2o3/2o3/2o3/2*b *c3/2*e o3/2o3/2o3/2o3/2o3/2*b *c3/2*e
x3o3/2o3o3o3/2*b *c3/2*e - (contains "2pen")
o3x3/2o3o3o3/2*b *c3/2*e - (contains "2tet")
o3o3/2x3o3o3/2*b *c3/2*e - (contains "2tet")
o3o3/2o3x3o3/2*b *c3/2*e - (contains "2tet")

x3x3/2o3o3o3/2*b *c3/2*e - (contains "2tet")
x3o3/2x3o3o3/2*b *c3/2*e - (contains "2tet")
x3o3/2o3x3o3/2*b *c3/2*e - (contains "2tet")
o3x3/2x3o3o3/2*b *c3/2*e - [Grünbaumian]
o3x3/2o3x3o3/2*b *c3/2*e - (contains "2tet")
o3o3/2x3x3o3/2*b *c3/2*e - (contains "2tet")
o3o3/2x3o3x3/2*b *c3/2*e - [Grünbaumian]

x3x3/2x3o3o3/2*b *c3/2*e - [Grünbaumian]
x3x3/2o3x3o3/2*b *c3/2*e - (contains "2tet")
x3o3/2x3x3o3/2*b *c3/2*e - (contains "2tet")
x3o3/2x3o3x3/2*b *c3/2*e - [Grünbaumian]
o3x3/2x3x3o3/2*b *c3/2*e - [Grünbaumian]
o3x3/2x3o3x3/2*b *c3/2*e - [Grünbaumian]
o3o3/2x3x3x3/2*b *c3/2*e - [Grünbaumian]

x3x3/2x3x3o3/2*b *c3/2*e - [Grünbaumian]
x3x3/2x3o3x3/2*b *c3/2*e - [Grünbaumian]
x3o3/2x3x3x3/2*b *c3/2*e - [Grünbaumian]
o3x3/2x3x3x3/2*b *c3/2*e - [Grünbaumian]

x3x3/2x3x3x3/2*b *c3/2*e - [Grünbaumian]
x3/2o3/2o3o3o3/2*b *c3/2*e - (contains "2pen")
o3/2x3/2o3o3o3/2*b *c3/2*e - (contains "2tet")
o3/2o3/2x3o3o3/2*b *c3/2*e - (contains "2tet")
o3/2o3/2o3x3o3/2*b *c3/2*e - (contains "2tet")

x3/2x3/2o3o3o3/2*b *c3/2*e - [Grünbaumian]
x3/2o3/2x3o3o3/2*b *c3/2*e - (contains "2tet")
x3/2o3/2o3x3o3/2*b *c3/2*e - (contains "2tet")
o3/2x3/2x3o3o3/2*b *c3/2*e - [Grünbaumian]
o3/2x3/2o3x3o3/2*b *c3/2*e - (contains "2tet")
o3/2o3/2x3x3o3/2*b *c3/2*e - (contains "2tet")
o3/2o3/2x3o3x3/2*b *c3/2*e - [Grünbaumian]

x3/2x3/2x3o3o3/2*b *c3/2*e - [Grünbaumian]
x3/2x3/2o3x3o3/2*b *c3/2*e - [Grünbaumian]
x3/2o3/2x3x3o3/2*b *c3/2*e - (contains "2tet")
x3/2o3/2x3o3x3/2*b *c3/2*e - [Grünbaumian]
o3/2x3/2x3x3o3/2*b *c3/2*e - [Grünbaumian]
o3/2x3/2x3o3x3/2*b *c3/2*e - [Grünbaumian]
o3/2o3/2x3x3x3/2*b *c3/2*e - [Grünbaumian]

x3/2x3/2x3x3o3/2*b *c3/2*e - [Grünbaumian]
x3/2x3/2x3o3x3/2*b *c3/2*e - [Grünbaumian]
x3/2o3/2x3x3x3/2*b *c3/2*e - [Grünbaumian]
o3/2x3/2x3x3x3/2*b *c3/2*e - [Grünbaumian]

x3/2x3/2x3x3x3/2*b *c3/2*e - [Grünbaumian]
x3o3/2o3/2o3/2o3/2*b *c3/2*e - (contains "2pen")
o3x3/2o3/2o3/2o3/2*b *c3/2*e - (contains "2tet")
o3o3/2x3/2o3/2o3/2*b *c3/2*e - (contains "2tet")
o3o3/2o3/2x3/2o3/2*b *c3/2*e - (contains "2tet")

x3x3/2o3/2o3/2o3/2*b *c3/2*e - (contains "2tet")
x3o3/2x3/2o3/2o3/2*b *c3/2*e - (contains "2tet")
x3o3/2o3/2x3/2o3/2*b *c3/2*e - (contains "2tet")
o3x3/2x3/2o3/2o3/2*b *c3/2*e - [Grünbaumian]
o3x3/2o3/2x3/2o3/2*b *c3/2*e - (contains "2tet")
o3o3/2x3/2x3/2o3/2*b *c3/2*e - [Grünbaumian]
o3o3/2x3/2o3/2x3/2*b *c3/2*e - [Grünbaumian]

x3x3/2x3/2o3/2o3/2*b *c3/2*e - [Grünbaumian]
x3x3/2o3/2x3/2o3/2*b *c3/2*e - (contains "2tet")
x3o3/2x3/2x3/2o3/2*b *c3/2*e - [Grünbaumian]
x3o3/2x3/2o3/2x3/2*b *c3/2*e - [Grünbaumian]
o3x3/2x3/2x3/2o3/2*b *c3/2*e - [Grünbaumian]
o3x3/2x3/2o3/2x3/2*b *c3/2*e - [Grünbaumian]
o3o3/2x3/2x3/2x3/2*b *c3/2*e - [Grünbaumian]

x3x3/2x3/2x3/2o3/2*b *c3/2*e - [Grünbaumian]
x3x3/2x3/2o3/2x3/2*b *c3/2*e - [Grünbaumian]
x3o3/2x3/2x3/2x3/2*b *c3/2*e - [Grünbaumian]
o3x3/2x3/2x3/2x3/2*b *c3/2*e - [Grünbaumian]

x3x3/2x3/2x3/2x3/2*b *c3/2*e - [Grünbaumian]
x3/2o3/2o3/2o3/2o3/2*b *c3/2*e - (contains "2pen")
o3/2x3/2o3/2o3/2o3/2*b *c3/2*e - (contains "2tet")
o3/2o3/2x3/2o3/2o3/2*b *c3/2*e - (contains "2tet")
o3/2o3/2o3/2x3/2o3/2*b *c3/2*e - (contains "2tet")

x3/2x3/2o3/2o3/2o3/2*b *c3/2*e - [Grünbaumian]
x3/2o3/2x3/2o3/2o3/2*b *c3/2*e - (contains "2tet")
x3/2o3/2o3/2x3/2o3/2*b *c3/2*e - (contains "2tet")
o3/2x3/2x3/2o3/2o3/2*b *c3/2*e - [Grünbaumian]
o3/2x3/2o3/2x3/2o3/2*b *c3/2*e - (contains "2tet")
o3/2o3/2x3/2x3/2o3/2*b *c3/2*e - [Grünbaumian]
o3/2o3/2x3/2o3/2x3/2*b *c3/2*e - [Grünbaumian]

x3/2x3/2x3/2o3/2o3/2*b *c3/2*e - [Grünbaumian]
x3/2x3/2o3/2x3/2o3/2*b *c3/2*e - [Grünbaumian]
x3/2o3/2x3/2x3/2o3/2*b *c3/2*e - [Grünbaumian]
x3/2o3/2x3/2o3/2x3/2*b *c3/2*e - [Grünbaumian]
o3/2x3/2x3/2x3/2o3/2*b *c3/2*e - [Grünbaumian]
o3/2x3/2x3/2o3/2x3/2*b *c3/2*e - [Grünbaumian]
o3/2o3/2x3/2x3/2x3/2*b *c3/2*e - [Grünbaumian]

x3/2x3/2x3/2x3/2o3/2*b *c3/2*e - [Grünbaumian]
x3/2x3/2x3/2o3/2x3/2*b *c3/2*e - [Grünbaumian]
x3/2o3/2x3/2x3/2x3/2*b *c3/2*e - [Grünbaumian]
o3/2x3/2x3/2x3/2x3/2*b *c3/2*e - [Grünbaumian]

x3/2x3/2x3/2x3/2x3/2*b *c3/2*e - [Grünbaumian]



oblate crossed rhomb & tail ones
 o-P-o-Q-o-R-o-S-o-T-*b-U-*d  = 
                                
      o---Q---o---P---o         
       \     / \                
        R   U   T               
         \ /     \              
          o---S---o             

Within spherical symmetry this type of Dynkin diagrams only allows for P,Q,R,S,T,U being 3 or 3/2 only. Furthermore in each loop only an odd amount of 3/2 marks is allowed.

Demipenteractic Symmetries   (up)

o3o3o3o3o3*b3/2*d o3/2o3o3o3o3*b3/2*d o3o3o3/2o3/2o3*b3*d o3/2o3o3/2o3/2o3*b3*d
x3o3o3o3o3*b3/2*d - (contains "2pen")
o3x3o3o3o3*b3/2*d - (contains "2tet")
o3o3x3o3o3*b3/2*d - (contains "2tet")
o3o3o3x3o3*b3/2*d - (contains "2tet")

x3x3o3o3o3*b3/2*d - (contains "2tet")
x3o3x3o3o3*b3/2*d - (contains "2tet")
x3o3o3x3o3*b3/2*d - (contains "2tet")
o3x3x3o3o3*b3/2*d - (contains "2tet")
o3x3o3x3o3*b3/2*d - [Grünbaumian]
o3o3x3x3o3*b3/2*d - (contains "2tet")
o3o3x3o3x3*b3/2*d - (contains "2tet")

x3x3x3o3o3*b3/2*d - (contains "2tet")
x3x3o3x3o3*b3/2*d - [Grünbaumian]
x3o3x3x3o3*b3/2*d - (contains "2tet")
x3o3x3o3x3*b3/2*d - (contains "2tet")
o3x3x3x3o3*b3/2*d - [Grünbaumian]
o3x3x3o3x3*b3/2*d - ribrant
o3o3x3x3x3*b3/2*d - ript

x3x3x3x3o3*b3/2*d - [Grünbaumian]
x3x3x3o3x3*b3/2*d - roptit
x3o3x3x3x3*b3/2*d - (contains "2thah")
o3x3x3x3x3*b3/2*d - [Grünbaumian]

x3x3x3x3x3*b3/2*d - [Grünbaumian]
x3/2o3o3o3o3*b3/2*d - (contains "2pen")
o3/2x3o3o3o3*b3/2*d - (contains "2tet")
o3/2o3x3o3o3*b3/2*d - (contains "2tet")
o3/2o3o3x3o3*b3/2*d - (contains "2tet")

x3/2x3o3o3o3*b3/2*d - [Grünbaumian]
x3/2o3x3o3o3*b3/2*d - (contains "2tet")
x3/2o3o3x3o3*b3/2*d - (contains "2tet")
o3/2x3x3o3o3*b3/2*d - (contains "2tet")
o3/2x3o3x3o3*b3/2*d - [Grünbaumian]
o3/2o3x3x3o3*b3/2*d - (contains "2tet")
o3/2o3x3o3x3*b3/2*d - (contains "2tet")

x3/2x3x3o3o3*b3/2*d - [Grünbaumian]
x3/2x3o3x3o3*b3/2*d - [Grünbaumian]
x3/2o3x3x3o3*b3/2*d - (contains "2tet")
x3/2o3x3o3x3*b3/2*d - (contains "2tet")
o3/2x3x3x3o3*b3/2*d - [Grünbaumian]
o3/2x3x3o3x3*b3/2*d - ribrant
o3/2o3x3x3x3*b3/2*d - ript

x3/2x3x3x3o3*b3/2*d - [Grünbaumian]
x3/2x3x3o3x3*b3/2*d - [Grünbaumian]
x3/2o3x3x3x3*b3/2*d - (contains "2thah")
o3/2x3x3x3x3*b3/2*d - [Grünbaumian]

x3/2x3x3x3x3*b3/2*d - [Grünbaumian]
x3o3o3/2o3/2o3*b3*d - (contains "2pen")
o3x3o3/2o3/2o3*b3*d - (contains "2tet")
o3o3x3/2o3/2o3*b3*d - (contains "2tet")
o3o3o3/2x3/2o3*b3*d - (contains "2tet")

x3x3o3/2o3/2o3*b3*d - (contains "2tet")
x3o3x3/2o3/2o3*b3*d - (contains "2tet")
x3o3o3/2x3/2o3*b3*d - (contains "2tet")
o3x3x3/2o3/2o3*b3*d - (contains "2tet")
o3x3o3/2x3/2o3*b3*d - (contains "2thah")
o3o3x3/2x3/2o3*b3*d - [Grünbaumian]
o3o3x3/2o3/2x3*b3*d - (contains "2tet")

x3x3x3/2o3/2o3*b3*d - (contains "2tet")
x3x3o3/2x3/2o3*b3*d - (contains "2thah")
x3o3x3/2x3/2o3*b3*d - [Grünbaumian]
x3o3x3/2o3/2x3*b3*d - (contains "2tet")
o3x3x3/2x3/2o3*b3*d - [Grünbaumian]
o3x3x3/2o3/2x3*b3*d - ribrant
o3o3x3/2x3/2x3*b3*d - [Grünbaumian]

x3x3x3/2x3/2o3*b3*d - [Grünbaumian]
x3x3x3/2o3/2x3*b3*d - roptit
x3o3x3/2x3/2x3*b3*d - [Grünbaumian]
o3x3x3/2x3/2x3*b3*d - [Grünbaumian]

x3x3x3/2x3/2x3*b3*d - [Grünbaumian]
x3/2o3o3/2o3/2o3*b3*d - (contains "2pen")
o3/2x3o3/2o3/2o3*b3*d - (contains "2tet")
o3/2o3x3/2o3/2o3*b3*d - (contains "2tet")
o3/2o3o3/2x3/2o3*b3*d - (contains "2tet")

x3/2x3o3/2o3/2o3*b3*d - [Grünbaumian]
x3/2o3x3/2o3/2o3*b3*d - (contains "2tet")
x3/2o3o3/2x3/2o3*b3*d - (contains "2tet")
o3/2x3x3/2o3/2o3*b3*d - (contains "2tet")
o3/2x3o3/2x3/2o3*b3*d - (contains "2thah")
o3/2o3x3/2x3/2o3*b3*d - [Grünbaumian]
o3/2o3x3/2o3/2x3*b3*d - (contains "2tet")

x3/2x3x3/2o3/2o3*b3*d - [Grünbaumian]
x3/2x3o3/2x3/2o3*b3*d - [Grünbaumian]
x3/2o3x3/2x3/2o3*b3*d - [Grünbaumian]
x3/2o3x3/2o3/2x3*b3*d - (contains "2tet")
o3/2x3x3/2x3/2o3*b3*d - [Grünbaumian]
o3/2x3x3/2o3/2x3*b3*d - ribrant
o3/2o3x3/2x3/2x3*b3*d - [Grünbaumian]

x3/2x3x3/2x3/2o3*b3*d - [Grünbaumian]
x3/2x3x3/2o3/2x3*b3*d - [Grünbaumian]
x3/2o3x3/2x3/2x3*b3*d - [Grünbaumian]
o3/2x3x3/2x3/2x3*b3*d - [Grünbaumian]

x3/2x3x3/2x3/2x3*b3*d - [Grünbaumian]
o3o3/2o3o3o3/2*b3*d o3/2o3/2o3o3o3/2*b3*d o3o3o3/2o3o3/2*b3*d o3/2o3o3/2o3o3/2*b3*d
x3o3/2o3o3o3/2*b3*d - (contains "2pen")
o3x3/2o3o3o3/2*b3*d - (contains "2tet")
o3o3/2x3o3o3/2*b3*d - (contains "2tet")
o3o3/2o3x3o3/2*b3*d - (contains "2tet")

x3x3/2o3o3o3/2*b3*d - (contains "2tet")
x3o3/2x3o3o3/2*b3*d - (contains "2tet")
x3o3/2o3x3o3/2*b3*d - (contains "2tet")
o3x3/2x3o3o3/2*b3*d - [Grünbaumian]
o3x3/2o3x3o3/2*b3*d - (contains "2thah")
o3o3/2x3x3o3/2*b3*d - (contains "2tet")
o3o3/2x3o3x3/2*b3*d - (contains "2tet")

x3x3/2x3o3o3/2*b3*d - [Grünbaumian]
x3x3/2o3x3o3/2*b3*d - (contains "2thah")
x3o3/2x3x3o3/2*b3*d - (contains "2tet")
x3o3/2x3o3x3/2*b3*d - (contains "2tet")
o3x3/2x3x3o3/2*b3*d - [Grünbaumian]
o3x3/2x3o3x3/2*b3*d - [Grünbaumian]
o3o3/2x3x3x3/2*b3*d - ript

x3x3/2x3x3o3/2*b3*d - [Grünbaumian]
x3x3/2x3o3x3/2*b3*d - [Grünbaumian]
x3o3/2x3x3x3/2*b3*d - (contains "2thah")
o3x3/2x3x3x3/2*b3*d - [Grünbaumian]

x3x3/2x3x3x3/2*b3*d - [Grünbaumian]
x3/2o3/2o3o3o3/2*b3*d - (contains "2pen")
o3/2x3/2o3o3o3/2*b3*d - (contains "2tet")
o3/2o3/2x3o3o3/2*b3*d - (contains "2tet")
o3/2o3/2o3x3o3/2*b3*d - (contains "2tet")

x3/2x3/2o3o3o3/2*b3*d - [Grünbaumian]
x3/2o3/2x3o3o3/2*b3*d - (contains "2tet")
x3/2o3/2o3x3o3/2*b3*d - (contains "2tet")
o3/2x3/2x3o3o3/2*b3*d - [Grünbaumian]
o3/2x3/2o3x3o3/2*b3*d - (contains "2thah")
o3/2o3/2x3x3o3/2*b3*d - (contains "2tet")
o3/2o3/2x3o3x3/2*b3*d - (contains "2tet")

x3/2x3/2x3o3o3/2*b3*d - [Grünbaumian]
x3/2x3/2o3x3o3/2*b3*d - [Grünbaumian]
x3/2o3/2x3x3o3/2*b3*d - (contains "2tet")
x3/2o3/2x3o3x3/2*b3*d - (contains "2tet")
o3/2x3/2x3x3o3/2*b3*d - [Grünbaumian]
o3/2x3/2x3o3x3/2*b3*d - [Grünbaumian]
o3/2o3/2x3x3x3/2*b3*d - ript

x3/2x3/2x3x3o3/2*b3*d - [Grünbaumian]
x3/2x3/2x3o3x3/2*b3*d - [Grünbaumian]
x3/2o3/2x3x3x3/2*b3*d - (contains "2thah")
o3/2x3/2x3x3x3/2*b3*d - [Grünbaumian]

x3/2x3/2x3x3x3/2*b3*d - [Grünbaumian]
x3o3o3/2o3o3/2*b3*d - (contains "2pen")
o3x3o3/2o3o3/2*b3*d - (contains "2tet")
o3o3x3/2o3o3/2*b3*d - (contains "2tet")
o3o3o3/2x3o3/2*b3*d - (contains "2tet")
o3o3o3/2o3x3/2*b3*d - (contains "2tet")

x3x3o3/2o3o3/2*b3*d - (contains "2tet")
x3o3x3/2o3o3/2*b3*d - (contains "2tet")
x3o3o3/2x3o3/2*b3*d - (contains "2tet")
x3o3o3/2o3x3/2*b3*d - (contains "2tet")
o3x3x3/2o3o3/2*b3*d - (contains "2tet")
o3x3o3/2x3o3/2*b3*d - (contains "2thah")
o3x3o3/2o3x3/2*b3*d - [Grünbaumian]
o3o3x3/2x3o3/2*b3*d - [Grünbaumian]
o3o3x3/2o3x3/2*b3*d - (contains "2tet")
o3o3o3/2x3x3/2*b3*d - (contains "2tet")

x3x3x3/2o3o3/2*b3*d - (contains "2tet")
x3x3o3/2x3o3/2*b3*d - (contains "2thah")
x3x3o3/2o3x3/2*b3*d - [Grünbaumian]
x3o3x3/2x3o3/2*b3*d - [Grünbaumian]
x3o3x3/2o3x3/2*b3*d - (contains "2tet")
x3o3o3/2x3x3/2*b3*d - (contains "2tet")
o3x3x3/2x3o3/2*b3*d - [Grünbaumian]
o3x3x3/2o3x3/2*b3*d - [Grünbaumian]
o3x3o3/2x3x3/2*b3*d - [Grünbaumian]
o3o3x3/2x3x3/2*b3*d - [Grünbaumian]

x3x3x3/2x3o3/2*b3*d - [Grünbaumian]
x3x3x3/2o3x3/2*b3*d - [Grünbaumian]
x3x3o3/2x3x3/2*b3*d - [Grünbaumian]
x3o3x3/2x3x3/2*b3*d - [Grünbaumian]
o3x3x3/2x3x3/2*b3*d - [Grünbaumian]

x3x3x3/2x3x3/2*b3*d - [Grünbaumian]
x3/2o3o3/2o3o3/2*b3*d - (contains "2pen")
o3/2x3o3/2o3o3/2*b3*d - (contains "2tet")
o3/2o3x3/2o3o3/2*b3*d - (contains "2tet")
o3/2o3o3/2x3o3/2*b3*d - (contains "2tet")
o3/2o3o3/2o3x3/2*b3*d - (contains "2tet")

x3/2x3o3/2o3o3/2*b3*d - [Grünbaumian]
x3/2o3x3/2o3o3/2*b3*d - (contains "2tet")
x3/2o3o3/2x3o3/2*b3*d - (contains "2tet")
x3/2o3o3/2o3x3/2*b3*d - (contains "2tet")
o3/2x3x3/2o3o3/2*b3*d - (contains "2tet")
o3/2x3o3/2x3o3/2*b3*d - (contains "2thah")
o3/2x3o3/2o3x3/2*b3*d - [Grünbaumian]
o3/2o3x3/2x3o3/2*b3*d - [Grünbaumian]
o3/2o3x3/2o3x3/2*b3*d - (contains "2tet")
o3/2o3o3/2x3x3/2*b3*d - (contains "2tet")

x3/2x3x3/2o3o3/2*b3*d - [Grünbaumian]
x3/2x3o3/2x3o3/2*b3*d - [Grünbaumian]
x3/2x3o3/2o3x3/2*b3*d - [Grünbaumian]
x3/2o3x3/2x3o3/2*b3*d - [Grünbaumian]
x3/2o3x3/2o3x3/2*b3*d - (contains "2tet")
x3/2o3o3/2x3x3/2*b3*d - (contains "2tet")
o3/2x3x3/2x3o3/2*b3*d - [Grünbaumian]
o3/2x3x3/2o3x3/2*b3*d - [Grünbaumian]
o3/2x3o3/2x3x3/2*b3*d - [Grünbaumian]
o3/2o3x3/2x3x3/2*b3*d - [Grünbaumian]

x3/2x3x3/2x3o3/2*b3*d - [Grünbaumian]
x3/2x3x3/2o3x3/2*b3*d - [Grünbaumian]
x3/2x3o3/2x3x3/2*b3*d - [Grünbaumian]
x3/2o3x3/2x3x3/2*b3*d - [Grünbaumian]
o3/2x3x3/2x3x3/2*b3*d - [Grünbaumian]

x3/2x3x3/2x3x3/2*b3*d - [Grünbaumian]
o3o3o3o3/2o3/2*b3/2*d o3/2o3o3o3/2o3/2*b3/2*d o3o3/2o3/2o3/2o3/2*b3/2*d o3/2o3/2o3/2o3/2o3/2*b3/2*d
x3o3o3o3/2o3/2*b3/2*d - (contains "2pen")
o3x3o3o3/2o3/2*b3/2*d - (contains "2tet")
o3o3x3o3/2o3/2*b3/2*d - (contains "2tet")
o3o3o3x3/2o3/2*b3/2*d - (contains "2tet")
o3o3o3o3/2x3/2*b3/2*d - (contains "2tet")

x3x3o3o3/2o3/2*b3/2*d - (contains "2tet")
x3o3x3o3/2o3/2*b3/2*d - (contains "2tet")
x3o3o3x3/2o3/2*b3/2*d - (contains "2tet")
x3o3o3o3/2x3/2*b3/2*d - (contains "2tet")
o3x3x3o3/2o3/2*b3/2*d - (contains "2tet")
o3x3o3x3/2o3/2*b3/2*d - [Grünbaumian]
o3x3o3o3/2x3/2*b3/2*d - [Grünbaumian]
o3o3x3x3/2o3/2*b3/2*d - (contains "2tet")
o3o3x3o3/2x3/2*b3/2*d - (contains "2tet")
o3o3o3x3/2x3/2*b3/2*d - [Grünbaumian]

x3x3x3o3/2o3/2*b3/2*d - (contains "2tet")
x3x3o3x3/2o3/2*b3/2*d - [Grünbaumian]
x3x3o3o3/2x3/2*b3/2*d - [Grünbaumian]
x3o3x3x3/2o3/2*b3/2*d - (contains "2tet")
x3o3x3o3/2x3/2*b3/2*d - (contains "2tet")
x3o3o3x3/2x3/2*b3/2*d - [Grünbaumian]
o3x3x3x3/2o3/2*b3/2*d - [Grünbaumian]
o3x3x3o3/2x3/2*b3/2*d - [Grünbaumian]
o3x3o3x3/2x3/2*b3/2*d - [Grünbaumian]
o3o3x3x3/2x3/2*b3/2*d - [Grünbaumian]

x3x3x3x3/2o3/2*b3/2*d - [Grünbaumian]
x3x3x3o3/2x3/2*b3/2*d - [Grünbaumian]
x3x3o3x3/2x3/2*b3/2*d - [Grünbaumian]
x3o3x3x3/2x3/2*b3/2*d - [Grünbaumian]
o3x3x3x3/2x3/2*b3/2*d - [Grünbaumian]

x3x3x3x3/2x3/2*b3/2*d - [Grünbaumian]
x3/2o3o3o3/2o3/2*b3/2*d - (contains "2pen")
o3/2x3o3o3/2o3/2*b3/2*d - (contains "2tet")
o3/2o3x3o3/2o3/2*b3/2*d - (contains "2tet")
o3/2o3o3x3/2o3/2*b3/2*d - (contains "2tet")
o3/2o3o3o3/2x3/2*b3/2*d - (contains "2tet")

x3/2x3o3o3/2o3/2*b3/2*d - [Grünbaumian]
x3/2o3x3o3/2o3/2*b3/2*d - (contains "2tet")
x3/2o3o3x3/2o3/2*b3/2*d - (contains "2tet")
x3/2o3o3o3/2x3/2*b3/2*d - (contains "2tet")
o3/2x3x3o3/2o3/2*b3/2*d - (contains "2tet")
o3/2x3o3x3/2o3/2*b3/2*d - [Grünbaumian]
o3/2x3o3o3/2x3/2*b3/2*d - [Grünbaumian]
o3/2o3x3x3/2o3/2*b3/2*d - (contains "2tet")
o3/2o3x3o3/2x3/2*b3/2*d - (contains "2tet")
o3/2o3o3x3/2x3/2*b3/2*d - [Grünbaumian]

x3/2x3x3o3/2o3/2*b3/2*d - [Grünbaumian]
x3/2x3o3x3/2o3/2*b3/2*d - [Grünbaumian]
x3/2x3o3o3/2x3/2*b3/2*d - [Grünbaumian]
x3/2o3x3x3/2o3/2*b3/2*d - (contains "2tet")
x3/2o3x3o3/2x3/2*b3/2*d - (contains "2tet")
x3/2o3o3x3/2x3/2*b3/2*d - [Grünbaumian]
o3/2x3x3x3/2o3/2*b3/2*d - [Grünbaumian]
o3/2x3x3o3/2x3/2*b3/2*d - [Grünbaumian]
o3/2x3o3x3/2x3/2*b3/2*d - [Grünbaumian]
o3/2o3x3x3/2x3/2*b3/2*d - [Grünbaumian]

x3/2x3x3x3/2o3/2*b3/2*d - [Grünbaumian]
x3/2x3x3o3/2x3/2*b3/2*d - [Grünbaumian]
x3/2x3o3x3/2x3/2*b3/2*d - [Grünbaumian]
x3/2o3x3x3/2x3/2*b3/2*d - [Grünbaumian]
o3/2x3x3x3/2x3/2*b3/2*d - [Grünbaumian]

x3/2x3x3x3/2x3/2*b3/2*d - [Grünbaumian]
x3o3/2o3/2o3/2o3/2*b3/2*d - (contains "2pen")
o3x3/2o3/2o3/2o3/2*b3/2*d - (contains "2tet")
o3o3/2x3/2o3/2o3/2*b3/2*d - (contains "2tet")
o3o3/2o3/2x3/2o3/2*b3/2*d - (contains "2tet")

x3x3/2o3/2o3/2o3/2*b3/2*d - (contains "2tet")
x3o3/2x3/2o3/2o3/2*b3/2*d - (contains "2tet")
x3o3/2o3/2x3/2o3/2*b3/2*d - (contains "2tet")
o3x3/2x3/2o3/2o3/2*b3/2*d - [Grünbaumian]
o3x3/2o3/2x3/2o3/2*b3/2*d - [Grünbaumian]
o3o3/2x3/2x3/2o3/2*b3/2*d - [Grünbaumian]
o3o3/2x3/2o3/2x3/2*b3/2*d - (contains "2tet")

x3x3/2x3/2o3/2o3/2*b3/2*d - [Grünbaumian]
x3x3/2o3/2x3/2o3/2*b3/2*d - [Grünbaumian]
x3o3/2x3/2x3/2o3/2*b3/2*d - [Grünbaumian]
x3o3/2x3/2o3/2x3/2*b3/2*d - (contains "2tet")
o3x3/2x3/2x3/2o3/2*b3/2*d - [Grünbaumian]
o3x3/2x3/2o3/2x3/2*b3/2*d - [Grünbaumian]
o3o3/2x3/2x3/2x3/2*b3/2*d - [Grünbaumian]

x3x3/2x3/2x3/2o3/2*b3/2*d - [Grünbaumian]
x3x3/2x3/2o3/2x3/2*b3/2*d - [Grünbaumian]
x3o3/2x3/2x3/2x3/2*b3/2*d - [Grünbaumian]
o3x3/2x3/2x3/2x3/2*b3/2*d - [Grünbaumian]

x3x3/2x3/2x3/2x3/2*b3/2*d - [Grünbaumian]
x3/2o3/2o3/2o3/2o3/2*b3/2*d - (contains "2pen")
o3/2x3/2o3/2o3/2o3/2*b3/2*d - (contains "2tet")
o3/2o3/2x3/2o3/2o3/2*b3/2*d - (contains "2tet")
o3/2o3/2o3/2x3/2o3/2*b3/2*d - (contains "2tet")

x3/2x3/2o3/2o3/2o3/2*b3/2*d - [Grünbaumian]
x3/2o3/2x3/2o3/2o3/2*b3/2*d - (contains "2tet")
x3/2o3/2o3/2x3/2o3/2*b3/2*d - (contains "2tet")
o3/2x3/2x3/2o3/2o3/2*b3/2*d - [Grünbaumian]
o3/2x3/2o3/2x3/2o3/2*b3/2*d - [Grünbaumian]
o3/2o3/2x3/2x3/2o3/2*b3/2*d - [Grünbaumian]
o3/2o3/2x3/2o3/2x3/2*b3/2*d - (contains "2tet")

x3/2x3/2x3/2o3/2o3/2*b3/2*d - [Grünbaumian]
x3/2x3/2o3/2x3/2o3/2*b3/2*d - [Grünbaumian]
x3/2o3/2x3/2x3/2o3/2*b3/2*d - [Grünbaumian]
x3/2o3/2x3/2o3/2x3/2*b3/2*d - (contains "2tet")
o3/2x3/2x3/2x3/2o3/2*b3/2*d - [Grünbaumian]
o3/2x3/2x3/2o3/2x3/2*b3/2*d - [Grünbaumian]
o3/2o3/2x3/2x3/2x3/2*b3/2*d - [Grünbaumian]

x3/2x3/2x3/2x3/2o3/2*b3/2*d - [Grünbaumian]
x3/2x3/2x3/2o3/2x3/2*b3/2*d - [Grünbaumian]
x3/2o3/2x3/2x3/2x3/2*b3/2*d - [Grünbaumian]
o3/2x3/2x3/2x3/2x3/2*b3/2*d - [Grünbaumian]

x3/2x3/2x3/2x3/2x3/2*b3/2*d - [Grünbaumian]



bowtie ones
 o-P-o-Q-o-R-*a-S-o-T-o-U-*a  =
                               
       o_             _o       
       |  -P_     _U-  |       
     Q |      >o<      | T     
       |  _R-     -S_  |       
       o-             -o       

Within spherical space this type of Dynkin diagrams allows in demipenteractic symmetry for P,Q,R,S,T,U all being either 3 or 3/2 only, where each loop, when considered alone, allows for an odd amount of 3/2 only. In (full) penteractic symmetry at most one loop is of type o3o4o4/3*a (or conjugates thereof), however the link mark 3 (or 3/2) needs to adjoin the central node of the bowtie.


Hexateric Symmetries   (up)

o3o3o3/2*a3o3o3/2*a o3o3o3/2*a3o3/2o3*a o3o3/2o3*a3o3/2o3*a
x3o3o3/2*a3o3o3/2*a - (contains "2tet")
o3x3o3/2*a3o3o3/2*a - (contains "2tet")
o3o3x3/2*a3o3o3/2*a - (contains "2tet")


x3x3o3/2*a3o3o3/2*a - (contains "2tet")
x3o3x3/2*a3o3o3/2*a - [Grünbaumian]
o3x3x3/2*a3o3o3/2*a - (contains "2pen")
o3x3o3/2*a3x3o3/2*a - (contains "2tet")
o3x3o3/2*a3o3x3/2*a - (contains "2tet")
o3o3x3/2*a3o3x3/2*a - (contains "2tet")


x3x3x3/2*a3o3o3/2*a - [Grünbaumian]
x3x3o3/2*a3x3o3/2*a - recard
x3x3o3/2*a3o3x3/2*a - [Grünbaumian]
x3o3x3/2*a3o3x3/2*a - [Grünbaumian]
o3x3x3/2*a3x3o3/2*a - (contains "2tet")
o3x3x3/2*a3o3x3/2*a - (contains "2tet")


x3x3x3/2*a3x3o3/2*a - [Grünbaumian]
x3x3x3/2*a3o3x3/2*a - [Grünbaumian]
o3x3x3/2*a3x3x3/2*a - 


x3x3x3/2*a3x3x3/2*a - [Grünbaumian]
x3o3o3/2*a3o3/2o3*a - (contains "2tet")
o3x3o3/2*a3o3/2o3*a - (contains "2tet")
o3o3x3/2*a3o3/2o3*a - (contains "2tet")
o3o3o3/2*a3x3/2o3*a - (contains "2tet")

x3x3o3/2*a3o3/2o3*a - (contains "2tet")
x3o3x3/2*a3o3/2o3*a - [Grünbaumian]
x3o3o3/2*a3x3/2o3*a - (contains "2tet")
o3x3x3/2*a3o3/2o3*a - (contains "2pen")
o3x3o3/2*a3x3/2o3*a - (contains "2tet")
o3o3x3/2*a3x3/2o3*a - (contains "2tet")
o3o3o3/2*a3x3/2x3*a - [Grünbaumian]

x3x3x3/2*a3o3/2o3*a - [Grünbaumian]
x3x3o3/2*a3x3/2o3*a - recard
x3o3x3/2*a3x3/2o3*a - [Grünbaumian]
x3o3o3/2*a3x3/2x3*a - [Grünbaumian]
o3x3x3/2*a3x3/2o3*a - (contains "2tet")
o3x3o3/2*a3x3/2x3*a - [Grünbaumian]
o3o3x3/2*a3x3/2x3*a - [Grünbaumian]

x3x3x3/2*a3x3/2o3*a - [Grünbaumian]
x3x3o3/2*a3x3/2x3*a - [Grünbaumian]
x3o3x3/2*a3x3/2x3*a - [Grünbaumian]
o3x3x3/2*a3x3/2x3*a - [Grünbaumian]

x3x3x3/2*a3x3/2x3*a - [Grünbaumian]
x3o3/2o3*a3o3/2o3*a - (contains "2tet")
o3x3/2o3*a3o3/2o3*a - (contains "2tet")



x3x3/2o3*a3o3/2o3*a - (contains "2tet")
o3x3/2x3*a3o3/2o3*a - [Grünbaumian]
o3x3/2o3*a3x3/2o3*a - (contains "2tet")





x3x3/2x3*a3o3/2o3*a - [Grünbaumian]
x3x3/2o3*a3x3/2o3*a - recard
o3x3/2x3*a3x3/2o3*a - [Grünbaumian]





x3x3/2x3*a3x3/2o3*a - [Grünbaumian]
o3x3/2x3*a3x3/2x3*a - [Grünbaumian]



x3x3/2x3*a3x3/2x3*a - [Grünbaumian]
o3/2o3/2o3/2*a3o3o3/2*a o3/2o3/2o3/2*a3o3/2o3*a o3/2o3/2o3/2*a3/2o3/2o3/2*a
x3/2o3/2o3/2*a3o3o3/2*a - (contains "2tet")
o3/2x3/2o3/2*a3o3o3/2*a - (contains "2tet")
o3/2o3/2o3/2*a3x3o3/2*a - (contains "2tet")
o3/2o3/2o3/2*a3o3x3/2*a - (contains "2tet")

x3/2x3/2o3/2*a3o3o3/2*a - [Grünbaumian]
x3/2o3/2o3/2*a3x3o3/2*a - (contains "2tet")
x3/2o3/2o3/2*a3o3x3/2*a - [Grünbaumian]
o3/2x3/2x3/2*a3o3o3/2*a - [Grünbaumian]
o3/2x3/2o3/2*a3x3o3/2*a - (contains "2tet")
o3/2x3/2o3/2*a3o3x3/2*a - (contains "2tet")
o3/2o3/2o3/2*a3x3x3/2*a - 

x3/2x3/2x3/2*a3o3o3/2*a - [Grünbaumian]
x3/2x3/2o3/2*a3x3o3/2*a - [Grünbaumian]
x3/2x3/2o3/2*a3o3x3/2*a - [Grünbaumian]
x3/2o3/2o3/2*a3x3x3/2*a - [Grünbaumian]
o3/2x3/2x3/2*a3x3o3/2*a - [Grünbaumian]
o3/2x3/2x3/2*a3o3x3/2*a - [Grünbaumian]
o3/2x3/2o3/2*a3x3x3/2*a - (contains "2tet")

x3/2x3/2x3/2*a3x3o3/2*a - [Grünbaumian]
x3/2x3/2x3/2*a3o3x3/2*a - [Grünbaumian]
x3/2x3/2o3/2*a3x3x3/2*a - [Grünbaumian]
o3/2x3/2x3/2*a3x3x3/2*a - [Grünbaumian]

x3/2x3/2x3/2*a3x3x3/2*a - [Grünbaumian]
x3/2o3/2o3/2*a3o3/2o3*a - (contains "2tet")
o3/2x3/2o3/2*a3o3/2o3*a - (contains "2tet")
o3/2o3/2o3/2*a3x3/2o3*a - (contains "2tet")


x3/2x3/2o3/2*a3o3/2o3*a - [Grünbaumian]
x3/2o3/2o3/2*a3x3/2o3*a - (contains "2tet")
o3/2x3/2x3/2*a3o3/2o3*a - [Grünbaumian]
o3/2x3/2o3/2*a3x3/2o3*a - (contains "2tet")
o3/2o3/2o3/2*a3x3/2x3*a - [Grünbaumian]



x3/2x3/2x3/2*a3o3/2o3*a - [Grünbaumian]
x3/2x3/2o3/2*a3x3/2o3*a - [Grünbaumian]
x3/2o3/2o3/2*a3x3/2x3*a - [Grünbaumian]
o3/2x3/2x3/2*a3x3/2o3*a - [Grünbaumian]
o3/2x3/2o3/2*a3x3/2x3*a - [Grünbaumian]



x3/2x3/2x3/2*a3x3/2o3*a - [Grünbaumian]
x3/2x3/2o3/2*a3x3/2x3*a - [Grünbaumian]
o3/2x3/2x3/2*a3x3/2x3*a - [Grünbaumian]


x3/2x3/2x3/2*a3x3/2x3*a - [Grünbaumian]
x3/2o3/2o3/2*a3/2o3/2o3/2*a - (contains "2tet")
o3/2x3/2o3/2*a3/2o3/2o3/2*a - (contains "2tet")



x3/2x3/2o3/2*a3/2o3/2o3/2*a - [Grünbaumian]
o3/2x3/2x3/2*a3/2o3/2o3/2*a - [Grünbaumian]
o3/2x3/2o3/2*a3/2x3/2o3/2*a - (contains "2tet")





x3/2x3/2x3/2*a3/2o3/2o3/2*a - [Grünbaumian]
x3/2x3/2o3/2*a3/2x3/2o3/2*a - [Grünbaumian]
o3/2x3/2x3/2*a3/2x3/2o3/2*a - [Grünbaumian]





x3/2x3/2x3/2*a3/2x3/2o3/2*a - [Grünbaumian]
o3/2x3/2x3/2*a3/2x3/2x3/2*a - [Grünbaumian]



x3/2x3/2x3/2*a3/2x3/2x3/2*a - [Grünbaumian]

Penteractic Symmetries   (up)

o3o3o3/2*a3o4o4/3*a o3o3o3/2*a3o4/3o4*a o3o3o3/2*a3/2o4o4*a o3o3o3/2*a3/2o4/3o4/3*a
x3o3o3/2*a3o4o4/3*a - (contains "2tet")
o3x3o3/2*a3o4o4/3*a - (contains "2tet")
o3o3x3/2*a3o4o4/3*a - (contains "2tet")
o3o3o3/2*a3x4o4/3*a - (contains "2pen")
o3o3o3/2*a3o4x4/3*a - (contains "2tes")

x3x3o3/2*a3o4o4/3*a - (contains "oct+6{4}")
x3o3x3/2*a3o4o4/3*a - [Grünbaumian]
x3o3o3/2*a3x4o4/3*a - (contains "2tet")
x3o3o3/2*a3o4x4/3*a - (contains "2tet")
o3x3x3/2*a3o4o4/3*a - (contains "hex+8oct")
o3x3o3/2*a3x4o4/3*a - (contains "2tet")
o3x3o3/2*a3o4x4/3*a - (contains "2tet")
o3o3x3/2*a3x4o4/3*a - (contains "2tet")
o3o3x3/2*a3o4x4/3*a - (contains "2tet")
o3o3o3/2*a3x4x4/3*a - (contains "2pen")

x3x3x3/2*a3o4o4/3*a - [Grünbaumian]
x3x3o3/2*a3x4o4/3*a - (contains "2cho")
x3x3o3/2*a3o4x4/3*a - garcornit
x3o3x3/2*a3x4o4/3*a - [Grünbaumian]
x3o3x3/2*a3o4x4/3*a - [Grünbaumian]
x3o3o3/2*a3x4x4/3*a - (contains "2tet")
o3x3x3/2*a3x4o4/3*a - (contains "oct+6{4}")
o3x3x3/2*a3o4x4/3*a - (contains "2cube")
o3x3o3/2*a3x4x4/3*a - (contains "2tet")
o3o3x3/2*a3x4x4/3*a - (contains "2tet")

x3x3x3/2*a3x4o4/3*a - [Grünbaumian]
x3x3x3/2*a3o4x4/3*a - [Grünbaumian]
x3x3o3/2*a3x4x4/3*a - noqraptant
x3o3x3/2*a3x4x4/3*a - [Grünbaumian]
o3x3x3/2*a3x4x4/3*a - (contains "2thah")

x3x3x3/2*a3x4x4/3*a - [Grünbaumian]
x3o3o3/2*a3o4/3o4*a - (contains "2tet")
o3x3o3/2*a3o4/3o4*a - (contains "2tet")
o3o3x3/2*a3o4/3o4*a - (contains "2tet")
o3o3o3/2*a3x4/3o4*a - (contains "2pen")
o3o3o3/2*a3o4/3x4*a - (contains "2tes")

x3x3o3/2*a3o4/3o4*a - (contains "oct+6{4}")
x3o3x3/2*a3o4/3o4*a - [Grünbaumian]
x3o3o3/2*a3x4/3o4*a - (contains "2tet")
x3o3o3/2*a3o4/3x4*a - (contains "2tet")
o3x3x3/2*a3o4/3o4*a - (contains "hex+8oct")
o3x3o3/2*a3x4/3o4*a - (contains "2tet")
o3x3o3/2*a3o4/3x4*a - (contains "2tet")
o3o3x3/2*a3x4/3o4*a - (contains "2tet")
o3o3x3/2*a3o4/3x4*a - (contains "2tet")
o3o3o3/2*a3x4/3x4*a - (contains "2pen")

x3x3x3/2*a3o4/3o4*a - [Grünbaumian]
x3x3o3/2*a3x4/3o4*a - (contains "2cho")
x3x3o3/2*a3o4/3x4*a - recarnit
x3o3x3/2*a3x4/3o4*a - [Grünbaumian]
x3o3x3/2*a3o4/3x4*a - [Grünbaumian]
x3o3o3/2*a3x4/3x4*a - (contains "2tet")
o3x3x3/2*a3x4/3o4*a - (contains "oct+6{4}")
o3x3x3/2*a3o4/3x4*a - (contains "2cube")
o3x3o3/2*a3x4/3x4*a - (contains "2tet")
o3o3x3/2*a3x4/3x4*a - (contains "2tet")

x3x3x3/2*a3x4/3o4*a - [Grünbaumian]
x3x3x3/2*a3o4/3x4*a - [Grünbaumian]
x3x3o3/2*a3x4/3x4*a - narptint
x3o3x3/2*a3x4/3x4*a - [Grünbaumian]
o3x3x3/2*a3x4/3x4*a - (contains "2thah")

x3x3x3/2*a3x4/3x4*a - [Grünbaumian]
x3o3o3/2*a3/2o4o4*a - (contains "2tet")
o3x3o3/2*a3/2o4o4*a - (contains "2tet")
o3o3x3/2*a3/2o4o4*a - (contains "2tet")
o3o3o3/2*a3/2x4o4*a - (contains "2pen")
o3o3o3/2*a3/2o4x4*a - (contains "2tes")

x3x3o3/2*a3/2o4o4*a - (contains "oct+6{4}")
x3o3x3/2*a3/2o4o4*a - [Grünbaumian]
x3o3o3/2*a3/2x4o4*a - [Grünbaumian]
x3o3o3/2*a3/2o4x4*a - (contains "2tet")
o3x3x3/2*a3/2o4o4*a - (contains "hex+8oct")
o3x3o3/2*a3/2x4o4*a - (contains "2tet")
o3x3o3/2*a3/2o4x4*a - (contains "2tet")
o3o3x3/2*a3/2x4o4*a - (contains "2tet")
o3o3x3/2*a3/2o4x4*a - (contains "2tet")
o3o3o3/2*a3/2x4x4*a - (contains "2pen")

x3x3x3/2*a3/2o4o4*a - [Grünbaumian]
x3x3o3/2*a3/2x4o4*a - [Grünbaumian]
x3x3o3/2*a3/2o4x4*a - recarnit
x3o3x3/2*a3/2x4o4*a - [Grünbaumian]
x3o3x3/2*a3/2o4x4*a - [Grünbaumian]
x3o3o3/2*a3/2x4x4*a - [Grünbaumian]
o3x3x3/2*a3/2x4o4*a - (contains "oct+6{4}")
o3x3x3/2*a3/2o4x4*a - (contains "2cube")
o3x3o3/2*a3/2x4x4*a - (contains "2tet")
o3o3x3/2*a3/2x4x4*a - (contains "2tet")

x3x3x3/2*a3/2x4o4*a - [Grünbaumian]
x3x3x3/2*a3/2o4x4*a - [Grünbaumian]
x3x3o3/2*a3/2x4x4*a - [Grünbaumian]
x3o3x3/2*a3/2x4x4*a - [Grünbaumian]
o3x3x3/2*a3/2x4x4*a - (contains "2thah")

x3x3x3/2*a3/2x4x4*a - [Grünbaumian]
x3o3o3/2*a3/2o4/3o4/3*a - (contains "2tet")
o3x3o3/2*a3/2o4/3o4/3*a - (contains "2tet")
o3o3x3/2*a3/2o4/3o4/3*a - (contains "2tet")
o3o3o3/2*a3/2x4/3o4/3*a - (contains "2pen")
o3o3o3/2*a3/2o4/3x4/3*a - (contains "2tes")

x3x3o3/2*a3/2o4/3o4/3*a - (contains "oct+6{4}")
x3o3x3/2*a3/2o4/3o4/3*a - [Grünbaumian]
x3o3o3/2*a3/2x4/3o4/3*a - [Grünbaumian]
x3o3o3/2*a3/2o4/3x4/3*a - (contains "2tet")
o3x3x3/2*a3/2o4/3o4/3*a - (contains "hex+8oct")
o3x3o3/2*a3/2x4/3o4/3*a - (contains "2tet")
o3x3o3/2*a3/2o4/3x4/3*a - (contains "2tet")
o3o3x3/2*a3/2x4/3o4/3*a - (contains "2tet")
o3o3x3/2*a3/2o4/3x4/3*a - (contains "2tet")
o3o3o3/2*a3/2x4/3x4/3*a - (contains "2pen")

x3x3x3/2*a3/2o4/3o4/3*a - [Grünbaumian]
x3x3o3/2*a3/2x4/3o4/3*a - [Grünbaumian]
x3x3o3/2*a3/2o4/3x4/3*a - garcornit
x3o3x3/2*a3/2x4/3o4/3*a - [Grünbaumian]
x3o3x3/2*a3/2o4/3x4/3*a - [Grünbaumian]
x3o3o3/2*a3/2x4/3x4/3*a - [Grünbaumian]
o3x3x3/2*a3/2x4/3o4/3*a - (contains "oct+6{4}")
o3x3x3/2*a3/2o4/3x4/3*a - (contains "2cube")
o3x3o3/2*a3/2x4/3x4/3*a - (contains "2tet")
o3o3x3/2*a3/2x4/3x4/3*a - (contains "2tet")

x3x3x3/2*a3/2x4/3o4/3*a - [Grünbaumian]
x3x3x3/2*a3/2o4/3x4/3*a - [Grünbaumian]
x3x3o3/2*a3/2x4/3x4/3*a - [Grünbaumian]
x3o3x3/2*a3/2x4/3x4/3*a - [Grünbaumian]
o3x3x3/2*a3/2x4/3x4/3*a - (contains "2thah")

x3x3x3/2*a3/2x4/3x4/3*a - [Grünbaumian]
o3o3/2o3*a3o4o4/3*a o3o3/2o3*a3o4/3o4*a o3o3/2o3*a3/2o4o4*a o3o3/2o3*a3/2o4/3o4/3*a
x3o3/2o3*a3o4o4/3*a - (contains "2tet")
o3x3/2o3*a3o4o4/3*a - (contains "2tet")
o3o3/2o3*a3x4o4/3*a - (contains "2pen")
o3o3/2o3*a3o4x4/3*a - (contains "2tes")

x3x3/2o3*a3o4o4/3*a - (contains "oct+6{4}")
x3o3/2o3*a3x4o4/3*a - (contains "2tet")
x3o3/2o3*a3o4x4/3*a - (contains "2tet")
o3x3/2x3*a3o4o4/3*a - [Grünbaumian]
o3x3/2o3*a3x4o4/3*a - (contains "2tet")
o3x3/2o3*a3o4x4/3*a - (contains "2tet")
o3o3/2o3*a3x4x4/3*a - (contains "2pen")

x3x3/2x3*a3o4o4/3*a - [Grünbaumian]
x3x3/2o3*a3x4o4/3*a - (contains "2cho")
x3x3/2o3*a3o4x4/3*a - garcornit
x3o3/2o3*a3x4x4/3*a - (contains "2tet")
o3x3/2x3*a3x4o4/3*a - [Grünbaumian]
o3x3/2x3*a3o4x4/3*a - [Grünbaumian]
o3x3/2o3*a3x4x4/3*a - (contains "2tet")

x3x3/2x3*a3x4o4/3*a - [Grünbaumian]
x3x3/2x3*a3o4x4/3*a - [Grünbaumian]
x3x3/2o3*a3x4x4/3*a - noqraptant
o3x3/2x3*a3x4x4/3*a - [Grünbaumian]

x3x3/2x3*a3x4x4/3*a - [Grünbaumian]
x3o3/2o3*a3o4/3o4*a - (contains "2tet")
o3x3/2o3*a3o4/3o4*a - (contains "2tet")
o3o3/2o3*a3x4/3o4*a - (contains "2pen")
o3o3/2o3*a3o4/3x4*a - (contains "2tes")

x3x3/2o3*a3o4/3o4*a - (contains "oct+6{4}")
x3o3/2o3*a3x4/3o4*a - (contains "2tet")
x3o3/2o3*a3o4/3x4*a - (contains "2tet")
o3x3/2x3*a3o4/3o4*a - [Grünbaumian]
o3x3/2o3*a3x4/3o4*a - (contains "2tet")
o3x3/2o3*a3o4/3x4*a - (contains "2tet")
o3o3/2o3*a3x4/3x4*a - (contains "2pen")

x3x3/2x3*a3o4/3o4*a - [Grünbaumian]
x3x3/2o3*a3x4/3o4*a - (contains "2cho")
x3x3/2o3*a3o4/3x4*a - recarnit
x3o3/2o3*a3x4/3x4*a - (contains "2tet")
o3x3/2x3*a3x4/3o4*a - [Grünbaumian]
o3x3/2x3*a3o4/3x4*a - [Grünbaumian]
o3x3/2o3*a3x4/3x4*a - (contains "2tet")

x3x3/2x3*a3x4/3o4*a - [Grünbaumian]
x3x3/2x3*a3o4/3x4*a - [Grünbaumian]
x3x3/2o3*a3x4/3x4*a - narptint
o3x3/2x3*a3x4/3x4*a - [Grünbaumian]

x3x3/2x3*a3x4/3x4*a - [Grünbaumian]
x3o3/2o3*a3/2o4o4*a - (contains "2tet")
o3x3/2o3*a3/2o4o4*a - (contains "2tet")
o3o3/2o3*a3/2x4o4*a - (contains "2pen")
o3o3/2o3*a3/2o4x4*a - (contains "2tes")

x3x3/2o3*a3/2o4o4*a - (contains "oct+6{4}")
x3o3/2o3*a3/2x4o4*a - [Grünbaumian]
x3o3/2o3*a3/2o4x4*a - (contains "2tet")
o3x3/2x3*a3/2o4o4*a - [Grünbaumian]
o3x3/2o3*a3/2x4o4*a - (contains "2tet")
o3x3/2o3*a3/2o4x4*a - (contains "2tet")
o3o3/2o3*a3/2x4x4*a - (contains "2pen")

x3x3/2x3*a3/2o4o4*a - [Grünbaumian]
x3x3/2o3*a3/2x4o4*a - [Grünbaumian]
x3x3/2o3*a3/2o4x4*a - recarnit
x3o3/2o3*a3/2x4x4*a - [Grünbaumian]
o3x3/2x3*a3/2x4o4*a - [Grünbaumian]
o3x3/2x3*a3/2o4x4*a - [Grünbaumian]
o3x3/2o3*a3/2x4x4*a - (contains "2tet")

x3x3/2x3*a3/2x4o4*a - [Grünbaumian]
x3x3/2x3*a3/2o4x4*a - [Grünbaumian]
x3x3/2o3*a3/2x4x4*a - [Grünbaumian]
o3x3/2x3*a3/2x4x4*a - [Grünbaumian]

x3x3/2x3*a3/2x4x4*a - [Grünbaumian]
x3o3/2o3*a3/2o4/3o4/3*a - (contains "2tet")
o3x3/2o3*a3/2o4/3o4/3*a - (contains "2tet")
o3o3/2o3*a3/2x4/3o4/3*a - (contains "2pen")
o3o3/2o3*a3/2o4/3x4/3*a - (contains "2tes")

x3x3/2o3*a3/2o4/3o4/3*a - (contains "oct+6{4}")
x3o3/2o3*a3/2x4/3o4/3*a - [Grünbaumian]
x3o3/2o3*a3/2o4/3x4/3*a - (contains "2tet")
o3x3/2x3*a3/2o4/3o4/3*a - [Grünbaumian]
o3x3/2o3*a3/2x4/3o4/3*a - (contains "2tet")
o3x3/2o3*a3/2o4/3x4/3*a - (contains "2tet")
o3o3/2o3*a3/2x4/3x4/3*a - (contains "2pen")

x3x3/2x3*a3/2o4/3o4/3*a - [Grünbaumian]
x3x3/2o3*a3/2x4/3o4/3*a - [Grünbaumian]
x3x3/2o3*a3/2o4/3x4/3*a - garcornit
x3o3/2o3*a3/2x4/3x4/3*a - [Grünbaumian]
o3x3/2x3*a3/2x4/3o4/3*a - [Grünbaumian]
o3x3/2x3*a3/2o4/3x4/3*a - [Grünbaumian]
o3x3/2o3*a3/2x4/3x4/3*a - (contains "2tet")

x3x3/2x3*a3/2x4/3o4/3*a - [Grünbaumian]
x3x3/2x3*a3/2o4/3x4/3*a - [Grünbaumian]
x3x3/2o3*a3/2x4/3x4/3*a - [Grünbaumian]
o3x3/2x3*a3/2x4/3x4/3*a - [Grünbaumian]

x3x3/2x3*a3/2x4/3x4/3*a - [Grünbaumian]
o3/2o3/2o3/2*a3o4o4/3*a o3/2o3/2o3/2*a3o4/3o4*a o3/2o3/2o3/2*a3/2o4o4*a o3/2o3/2o3/2*a3/2o4/3o4/3*a
x3/2o3/2o3/2*a3o4o4/3*a - (contains "2tet")
o3/2x3/2o3/2*a3o4o4/3*a - (contains "2tet")
o3/2o3/2o3/2*a3x4o4/3*a - (contains "2pen")
o3/2o3/2o3/2*a3o4x4/3*a - (contains "2tes")

x3/2x3/2o3/2*a3o4o4/3*a - [Grünbaumian]
x3/2o3/2o3/2*a3x4o4/3*a - (contains "2tet")
x3/2o3/2o3/2*a3o4x4/3*a - (contains "2tet")
o3/2x3/2x3/2*a3o4o4/3*a - [Grünbaumian]
o3/2x3/2o3/2*a3x4o4/3*a - (contains "2tet")
o3/2x3/2o3/2*a3o4x4/3*a - (contains "2tet")
o3/2o3/2o3/2*a3x4x4/3*a - (contains "2pen")

x3/2x3/2x3/2*a3o4o4/3*a - [Grünbaumian]
x3/2x3/2o3/2*a3x4o4/3*a - [Grünbaumian]
x3/2x3/2o3/2*a3o4x4/3*a - [Grünbaumian]
x3/2o3/2o3/2*a3x4x4/3*a - (contains "2tet")
o3/2x3/2x3/2*a3x4o4/3*a - [Grünbaumian]
o3/2x3/2x3/2*a3o4x4/3*a - [Grünbaumian]
o3/2x3/2o3/2*a3x4x4/3*a - (contains "2tet")

x3/2x3/2x3/2*a3x4o4/3*a - [Grünbaumian]
x3/2x3/2x3/2*a3o4x4/3*a - [Grünbaumian]
x3/2x3/2o3/2*a3x4x4/3*a - [Grünbaumian]
o3/2x3/2x3/2*a3x4x4/3*a - [Grünbaumian]

x3/2x3/2x3/2*a3x4x4/3*a - [Grünbaumian]
x3/2o3/2o3/2*a3o4/3o4*a - (contains "2tet")
o3/2x3/2o3/2*a3o4/3o4*a - (contains "2tet")
o3/2o3/2o3/2*a3x4/3o4*a - (contains "2pen")
o3/2o3/2o3/2*a3o4/3x4*a - (contains "2tes")

x3/2x3/2o3/2*a3o4/3o4*a - [Grünbaumian]
x3/2o3/2o3/2*a3x4/3o4*a - (contains "2tet")
x3/2o3/2o3/2*a3o4/3x4*a - (contains "2tet")
o3/2x3/2x3/2*a3o4/3o4*a - [Grünbaumian]
o3/2x3/2o3/2*a3x4/3o4*a - (contains "2tet")
o3/2x3/2o3/2*a3o4/3x4*a - (contains "2tet")
o3/2o3/2o3/2*a3x4/3x4*a - (contains "2pen")

x3/2x3/2x3/2*a3o4/3o4*a - [Grünbaumian]
x3/2x3/2o3/2*a3x4/3o4*a - [Grünbaumian]
x3/2x3/2o3/2*a3o4/3x4*a - [Grünbaumian]
x3/2o3/2o3/2*a3x4/3x4*a - (contains "2tet")
o3/2x3/2x3/2*a3x4/3o4*a - [Grünbaumian]
o3/2x3/2x3/2*a3o4/3x4*a - [Grünbaumian]
o3/2x3/2o3/2*a3x4/3x4*a - (contains "2tet")

x3/2x3/2x3/2*a3x4/3o4*a - [Grünbaumian]
x3/2x3/2x3/2*a3o4/3x4*a - [Grünbaumian]
x3/2x3/2o3/2*a3x4/3x4*a - [Grünbaumian]
o3/2x3/2x3/2*a3x4/3x4*a - [Grünbaumian]

x3/2x3/2x3/2*a3x4/3x4*a - [Grünbaumian]
x3/2o3/2o3/2*a3/2o4o4*a - (contains "2tet")
o3/2x3/2o3/2*a3/2o4o4*a - (contains "2tet")
o3/2o3/2o3/2*a3/2x4o4*a - (contains "2pen")
o3/2o3/2o3/2*a3/2o4x4*a - (contains "2tes")

x3/2x3/2o3/2*a3/2o4o4*a - [Grünbaumian]
x3/2o3/2o3/2*a3/2x4o4*a - [Grünbaumian]
x3/2o3/2o3/2*a3/2o4x4*a - (contains "2tet")
o3/2x3/2x3/2*a3/2o4o4*a - [Grünbaumian]
o3/2x3/2o3/2*a3/2x4o4*a - (contains "2tet")
o3/2x3/2o3/2*a3/2o4x4*a - (contains "2tet")
o3/2o3/2o3/2*a3/2x4x4*a - (contains "2pen")

x3/2x3/2x3/2*a3/2o4o4*a - [Grünbaumian]
x3/2x3/2o3/2*a3/2x4o4*a - [Grünbaumian]
x3/2x3/2o3/2*a3/2o4x4*a - [Grünbaumian]
x3/2o3/2o3/2*a3/2x4x4*a - [Grünbaumian]
o3/2x3/2x3/2*a3/2x4o4*a - [Grünbaumian]
o3/2x3/2x3/2*a3/2o4x4*a - [Grünbaumian]
o3/2x3/2o3/2*a3/2x4x4*a - (contains "2tet")

x3/2x3/2x3/2*a3/2x4o4*a - [Grünbaumian]
x3/2x3/2x3/2*a3/2o4x4*a - [Grünbaumian]
x3/2x3/2o3/2*a3/2x4x4*a - [Grünbaumian]
o3/2x3/2x3/2*a3/2x4x4*a - [Grünbaumian]

x3/2x3/2x3/2*a3/2x4x4*a - [Grünbaumian]
x3/2o3/2o3/2*a3/2o4/3o4/3*a - (contains "2tet")
o3/2x3/2o3/2*a3/2o4/3o4/3*a - (contains "2tet")
o3/2o3/2o3/2*a3/2x4/3o4/3*a - (contains "2pen")
o3/2o3/2o3/2*a3/2o4/3x4/3*a - (contains "2tes")

x3/2x3/2o3/2*a3/2o4/3o4/3*a - [Grünbaumian]
x3/2o3/2o3/2*a3/2x4/3o4/3*a - [Grünbaumian]
x3/2o3/2o3/2*a3/2o4/3x4/3*a - (contains "2tet")
o3/2x3/2x3/2*a3/2o4/3o4/3*a - [Grünbaumian]
o3/2x3/2o3/2*a3/2x4/3o4/3*a - (contains "2tet")
o3/2x3/2o3/2*a3/2o4/3x4/3*a - (contains "2tet")
o3/2o3/2o3/2*a3/2x4/3x4/3*a - (contains "2pen")

x3/2x3/2x3/2*a3/2o4/3o4/3*a - [Grünbaumian]
x3/2x3/2o3/2*a3/2x4/3o4/3*a - [Grünbaumian]
x3/2x3/2o3/2*a3/2o4/3x4/3*a - [Grünbaumian]
x3/2o3/2o3/2*a3/2x4/3x4/3*a - [Grünbaumian]
o3/2x3/2x3/2*a3/2x4/3o4/3*a - [Grünbaumian]
o3/2x3/2x3/2*a3/2o4/3x4/3*a - [Grünbaumian]
o3/2x3/2o3/2*a3/2x4/3x4/3*a - (contains "2tet")

x3/2x3/2x3/2*a3/2x4/3o4/3*a - [Grünbaumian]
x3/2x3/2x3/2*a3/2o4/3x4/3*a - [Grünbaumian]
x3/2x3/2o3/2*a3/2x4/3x4/3*a - [Grünbaumian]
o3/2x3/2x3/2*a3/2x4/3x4/3*a - [Grünbaumian]

x3/2x3/2x3/2*a3/2x4/3x4/3*a - [Grünbaumian]


© 2004-2025
top of page