----
5D
----
This page is available sorted by point-group symmetry (below)
or by complexity (older version).
Terse Overview of Irreduzible Dynkin Graph Types
(For obvious reasons only the existing 4D graph types, which exist as subgroups in 5D as well, have to be extended here.)
o--P--o--Q--o--R--o--S--o
|
o-P-o-Q-o *b-R-o-S-o =
o_
-P_
>o--R--o--S--o
_Q-
o-
|
o-P-o-Q-o-R-o-S-o-T-*c =
_o
_R- |
o--P--o--Q--o< | S
-T_ |
-o
|
o-P-o-Q-o-R-o-S-o-T-*b =
o---P---o---Q---o
| |
T R
| |
o---S---o
|
o-P-o-Q-o-R-o *b-S-o-T-*c =
o--P--o--Q--o--R--o
\ /
S \ / T
o
|
o-P-o-Q-o-R-o-S-*b-T-o =
o_ _o
-P_ _Q- |
>o< | R
_T- -S_ |
o- -o
|
o-P-o-Q-o-R-o-S-o-T-*b *c-U-*e =
o---P---o---Q---o
\ / \
T U R
\ / \
o---S---o
|
o-P-o-Q-o-R-o-S-o-T-*b-U-*d =
o---Q---o---P---o
\ / \
R U T
\ / \
o---S---o
|
o-P-o-Q-o-R-*a-S-o-T-o-U-*a =
o_ _o
| -P_ _U- |
Q | >o< | T
| _R- -S_ |
o- -o
|
o-P-o-Q-o-R-o-S-o-T-*a =
_o_
_T- -P_
o- -o
\ /
S Q
\ /
o---R---o
|
o-P-o-Q-o-R-o-S-o-T-*a-U-*c =
o---T---o_
| | -P_
S U >o
| | _Q-
o---R---o
|
o-P-o-Q-o-R-*a-S-o-T-o-U-*a *c-V-*e =
o---P---o---U---o
\ / \ /
Q R S T
\ / \ /
o---V---o
|
o-P-o-Q-o-R-o-S-o-T-*b-U-*d *c-V-*e =
_o
_- /|
_Q- R |
_- / |
o---P---o<---U---o V
-_ \ |
-T_ S |
-_ \|
-o
|
|
In the following symmetry listings "etc." means replacments according to 3 ↔ 3/2,
to 4 ↔ 4/3, to 5 ↔ 5/4, or to 5/2 ↔ 5/3.
Polytera with Grünbaumian elements so far are not investigated
any further.
Those are Grünbaumian a priori, usually because of some subgraph -x-n/d-x-, where d is even.
Others, which come out as being Grünbaumian a posteriori will be given none the less.
o-P-o-Q-o-R-o-S-o-T-*b *c-U-*e =
o---P---o---Q---o
\ / \
T U R
\ / \
o---S---o
|
Within spherical symmetry this type of Dynkin diagrams only allows for P,Q,R,S,T,U being 3 or 3/2 only.
Furthermore in each loop only an odd amount of 3/2 marks is allowed.
Demipenteractic Symmetries (up)
x3o3o3o3o3*b *c3/2*e - (contains "2pen")
o3x3o3o3o3*b *c3/2*e - (contains "2tet")
o3o3x3o3o3*b *c3/2*e - (contains "2tet")
o3o3o3x3o3*b *c3/2*e - (contains "2tet")
x3x3o3o3o3*b *c3/2*e - (contains "2tet")
x3o3x3o3o3*b *c3/2*e - (contains "2tet")
x3o3o3x3o3*b *c3/2*e - (contains "2tet")
o3x3x3o3o3*b *c3/2*e - (contains "2tet")
o3x3o3x3o3*b *c3/2*e - (contains "2tet")
o3o3x3x3o3*b *c3/2*e - (contains "2tet")
o3o3x3o3x3*b *c3/2*e - [Grünbaumian]
x3x3x3o3o3*b *c3/2*e - (contains "2tet")
x3x3o3x3o3*b *c3/2*e - (contains "2tet")
x3o3x3x3o3*b *c3/2*e - (contains "2tet")
x3o3x3o3x3*b *c3/2*e - [Grünbaumian]
o3x3x3x3o3*b *c3/2*e - brewahen
o3x3x3o3x3*b *c3/2*e - [Grünbaumian]
o3o3x3x3x3*b *c3/2*e - [Grünbaumian]
x3x3x3x3o3*b *c3/2*e - ropith
x3x3x3o3x3*b *c3/2*e - [Grünbaumian]
x3o3x3x3x3*b *c3/2*e - [Grünbaumian]
o3x3x3x3x3*b *c3/2*e - [Grünbaumian]
x3x3x3x3x3*b *c3/2*e - [Grünbaumian]
|
x3/2o3o3o3o3*b *c3/2*e - (contains "2pen")
o3/2x3o3o3o3*b *c3/2*e - (contains "2tet")
o3/2o3x3o3o3*b *c3/2*e - (contains "2tet")
o3/2o3o3x3o3*b *c3/2*e - (contains "2tet")
x3/2x3o3o3o3*b *c3/2*e - [Grünbaumian]
x3/2o3x3o3o3*b *c3/2*e - (contains "2tet")
x3/2o3o3x3o3*b *c3/2*e - (contains "2tet")
o3/2x3x3o3o3*b *c3/2*e - (contains "2tet")
o3/2x3o3x3o3*b *c3/2*e - (contains "2tet")
o3/2o3x3x3o3*b *c3/2*e - (contains "2tet")
o3/2o3x3o3x3*b *c3/2*e - [Grünbaumian]
x3/2x3x3o3o3*b *c3/2*e - [Grünbaumian]
x3/2x3o3x3o3*b *c3/2*e - [Grünbaumian]
x3/2o3x3x3o3*b *c3/2*e - (contains "2tet")
x3/2o3x3o3x3*b *c3/2*e - [Grünbaumian]
o3/2x3x3x3o3*b *c3/2*e - brewahen
o3/2x3x3o3x3*b *c3/2*e - [Grünbaumian]
o3/2o3x3x3x3*b *c3/2*e - [Grünbaumian]
x3/2x3x3x3o3*b *c3/2*e - [Grünbaumian]
x3/2x3x3o3x3*b *c3/2*e - [Grünbaumian]
x3/2o3x3x3x3*b *c3/2*e - [Grünbaumian]
o3/2x3x3x3x3*b *c3/2*e - [Grünbaumian]
x3/2x3x3x3x3*b *c3/2*e - [Grünbaumian]
|
x3o3o3o3/2o3/2*b *c3*e - (contains "2pen")
o3x3o3o3/2o3/2*b *c3*e - (contains "2tet")
o3o3x3o3/2o3/2*b *c3*e - (contains "2tet")
o3o3o3x3/2o3/2*b *c3*e - (contains "2tet")
o3o3o3o3/2x3/2*b *c3*e - (contains "2tet")
x3x3o3o3/2o3/2*b *c3*e - (contains "2tet")
x3o3x3o3/2o3/2*b *c3*e - (contains "2tet")
x3o3o3x3/2o3/2*b *c3*e - (contains "2tet")
x3o3o3o3/2x3/2*b *c3*e - (contains "2tet")
o3x3x3o3/2o3/2*b *c3*e - (contains "2tet")
o3x3o3x3/2o3/2*b *c3*e - (contains "2tet")
o3x3o3o3/2x3/2*b *c3*e - [Grünbaumian]
o3o3x3x3/2o3/2*b *c3*e - (contains "2tet")
o3o3x3o3/2x3/2*b *c3*e - (contains "2oh")
o3o3o3x3/2x3/2*b *c3*e - [Grünbaumian]
x3x3x3o3/2o3/2*b *c3*e - (contains "2tet")
x3x3o3x3/2o3/2*b *c3*e - (contains "2tet")
x3x3o3o3/2x3/2*b *c3*e - [Grünbaumian]
x3o3x3x3/2o3/2*b *c3*e - (contains "2tet")
x3o3x3o3/2x3/2*b *c3*e - (contains "2thah")
x3o3o3x3/2x3/2*b *c3*e - [Grünbaumian]
o3x3x3x3/2o3/2*b *c3*e - brewahen
o3x3x3o3/2x3/2*b *c3*e - [Grünbaumian]
o3x3o3x3/2x3/2*b *c3*e - [Grünbaumian]
o3o3x3x3/2x3/2*b *c3*e - [Grünbaumian]
x3x3x3x3/2o3/2*b *c3*e - ropith
x3x3x3o3/2x3/2*b *c3*e - [Grünbaumian]
x3x3o3x3/2x3/2*b *c3*e - [Grünbaumian]
x3o3x3x3/2x3/2*b *c3*e - [Grünbaumian]
o3x3x3x3/2x3/2*b *c3*e - [Grünbaumian]
x3x3x3x3/2x3/2*b *c3*e - [Grünbaumian]
|
x3/2o3o3o3/2o3/2*b *c3*e - (contains "2pen")
o3/2x3o3o3/2o3/2*b *c3*e - (contains "2tet")
o3/2o3x3o3/2o3/2*b *c3*e - (contains "2tet")
o3/2o3o3x3/2o3/2*b *c3*e - (contains "2tet")
o3/2o3o3o3/2x3/2*b *c3*e - (contains "2tet")
x3/2x3o3o3/2o3/2*b *c3*e - [Grünbaumian]
x3/2o3x3o3/2o3/2*b *c3*e - (contains "2tet")
x3/2o3o3x3/2o3/2*b *c3*e - (contains "2tet")
x3/2o3o3o3/2x3/2*b *c3*e - (contains "2tet")
o3/2x3x3o3/2o3/2*b *c3*e - (contains "2tet")
o3/2x3o3x3/2o3/2*b *c3*e - (contains "2tet")
o3/2x3o3o3/2x3/2*b *c3*e - [Grünbaumian]
o3/2o3x3x3/2o3/2*b *c3*e - (contains "2tet")
o3/2o3x3o3/2x3/2*b *c3*e - (contains "2oh")
o3/2o3o3x3/2x3/2*b *c3*e - [Grünbaumian]
x3/2x3x3o3/2o3/2*b *c3*e - [Grünbaumian]
x3/2x3o3x3/2o3/2*b *c3*e - [Grünbaumian]
x3/2x3o3o3/2x3/2*b *c3*e - [Grünbaumian]
x3/2o3x3x3/2o3/2*b *c3*e - (contains "2tet")
x3/2o3x3o3/2x3/2*b *c3*e - (contains "2thah")
x3/2o3o3x3/2x3/2*b *c3*e - [Grünbaumian]
o3/2x3x3x3/2o3/2*b *c3*e - brewahen
o3/2x3x3o3/2x3/2*b *c3*e - [Grünbaumian]
o3/2x3o3x3/2x3/2*b *c3*e - [Grünbaumian]
o3/2o3x3x3/2x3/2*b *c3*e - [Grünbaumian]
x3/2x3x3x3/2o3/2*b *c3*e - [Grünbaumian]
x3/2x3x3o3/2x3/2*b *c3*e - [Grünbaumian]
x3/2x3o3x3/2x3/2*b *c3*e - [Grünbaumian]
x3/2o3x3x3/2x3/2*b *c3*e - [Grünbaumian]
o3/2x3x3x3/2x3/2*b *c3*e - [Grünbaumian]
x3/2x3x3x3/2x3/2*b *c3*e - [Grünbaumian]
|
x3o3o3/2o3o3/2*b *c3*e - (contains "2pen")
o3x3o3/2o3o3/2*b *c3*e - (contains "2tet")
o3o3x3/2o3o3/2*b *c3*e - (contains "2tet")
o3o3o3/2x3o3/2*b *c3*e - (contains "2tet")
o3o3o3/2o3x3/2*b *c3*e - (contains "2tet")
x3x3o3/2o3o3/2*b *c3*e - (contains "2tet")
x3o3x3/2o3o3/2*b *c3*e - (contains "2tet")
x3o3o3/2x3o3/2*b *c3*e - (contains "2tet")
x3o3o3/2o3x3/2*b *c3*e - (contains "2tet")
o3x3x3/2o3o3/2*b *c3*e - (contains "2tet")
o3x3o3/2x3o3/2*b *c3*e - (contains "2tet")
o3x3o3/2o3x3/2*b *c3*e - [Grünbaumian]
o3o3x3/2x3o3/2*b *c3*e - [Grünbaumian]
o3o3x3/2o3x3/2*b *c3*e - (contains "2oh")
o3o3o3/2x3x3/2*b *c3*e - (contains "2tet")
x3x3x3/2o3o3/2*b *c3*e - (contains "2tet")
x3x3o3/2x3o3/2*b *c3*e - (contains "2tet")
x3x3o3/2o3x3/2*b *c3*e - [Grünbaumian]
x3o3x3/2x3o3/2*b *c3*e - [Grünbaumian]
x3o3x3/2o3x3/2*b *c3*e - (contains "2thah")
x3o3o3/2x3x3/2*b *c3*e - (contains "2tet")
o3x3x3/2x3o3/2*b *c3*e - [Grünbaumian]
o3x3x3/2o3x3/2*b *c3*e - [Grünbaumian]
o3x3o3/2x3x3/2*b *c3*e - [Grünbaumian]
o3o3x3/2x3x3/2*b *c3*e - [Grünbaumian]
x3x3x3/2x3o3/2*b *c3*e - [Grünbaumian]
x3x3x3/2o3x3/2*b *c3*e - [Grünbaumian]
x3x3o3/2x3x3/2*b *c3*e - [Grünbaumian]
x3o3x3/2x3x3/2*b *c3*e - [Grünbaumian]
o3x3x3/2x3x3/2*b *c3*e - [Grünbaumian]
x3x3x3/2x3x3/2*b *c3*e - [Grünbaumian]
|
x3/2o3o3/2o3o3/2*b *c3*e - (contains "2pen")
o3/2x3o3/2o3o3/2*b *c3*e - (contains "2tet")
o3/2o3x3/2o3o3/2*b *c3*e - (contains "2tet")
o3/2o3o3/2x3o3/2*b *c3*e - (contains "2tet")
o3/2o3o3/2o3x3/2*b *c3*e - (contains "2tet")
x3/2x3o3/2o3o3/2*b *c3*e - [Grünbaumian]
x3/2o3x3/2o3o3/2*b *c3*e - (contains "2tet")
x3/2o3o3/2x3o3/2*b *c3*e - (contains "2tet")
x3/2o3o3/2o3x3/2*b *c3*e - (contains "2tet")
o3/2x3x3/2o3o3/2*b *c3*e - (contains "2tet")
o3/2x3o3/2x3o3/2*b *c3*e - (contains "2tet")
o3/2x3o3/2o3x3/2*b *c3*e - [Grünbaumian]
o3/2o3x3/2x3o3/2*b *c3*e - [Grünbaumian]
o3/2o3x3/2o3x3/2*b *c3*e - (contains "2oh")
o3/2o3o3/2x3x3/2*b *c3*e - (contains "2tet")
x3/2x3x3/2o3o3/2*b *c3*e - [Grünbaumian]
x3/2x3o3/2x3o3/2*b *c3*e - [Grünbaumian]
x3/2x3o3/2o3x3/2*b *c3*e - [Grünbaumian]
x3/2o3x3/2x3o3/2*b *c3*e - [Grünbaumian]
x3/2o3x3/2o3x3/2*b *c3*e - (contains "2thah")
x3/2o3o3/2x3x3/2*b *c3*e - (contains "2tet")
o3/2x3x3/2x3o3/2*b *c3*e - [Grünbaumian]
o3/2x3x3/2o3x3/2*b *c3*e - [Grünbaumian]
o3/2x3o3/2x3x3/2*b *c3*e - [Grünbaumian]
o3/2o3x3/2x3x3/2*b *c3*e - [Grünbaumian]
x3/2x3x3/2x3o3/2*b *c3*e - [Grünbaumian]
x3/2x3x3/2o3x3/2*b *c3*e - [Grünbaumian]
x3/2x3o3/2x3x3/2*b *c3*e - [Grünbaumian]
x3/2o3x3/2x3x3/2*b *c3*e - [Grünbaumian]
o3/2x3x3/2x3x3/2*b *c3*e - [Grünbaumian]
x3/2x3x3/2x3x3/2*b *c3*e - [Grünbaumian]
|
x3o3o3/2o3/2o3*b *c3/2*e - (contains "2pen")
o3x3o3/2o3/2o3*b *c3/2*e - (contains "2tet")
o3o3x3/2o3/2o3*b *c3/2*e - (contains "2tet")
o3o3o3/2x3/2o3*b *c3/2*e - (contains "2tet")
x3x3o3/2o3/2o3*b *c3/2*e - (contains "2tet")
x3o3x3/2o3/2o3*b *c3/2*e - (contains "2tet")
x3o3o3/2x3/2o3*b *c3/2*e - (contains "2tet")
o3x3x3/2o3/2o3*b *c3/2*e - (contains "2tet")
o3x3o3/2x3/2o3*b *c3/2*e - (contains "2tet")
o3o3x3/2x3/2o3*b *c3/2*e - [Grünbaumian]
o3o3x3/2o3/2x3*b *c3/2*e - [Grünbaumian]
x3x3x3/2o3/2o3*b *c3/2*e - (contains "2tet")
x3x3o3/2x3/2o3*b *c3/2*e - (contains "2tet")
x3o3x3/2x3/2o3*b *c3/2*e - [Grünbaumian]
x3o3x3/2o3/2x3*b *c3/2*e - [Grünbaumian]
o3x3x3/2x3/2o3*b *c3/2*e - [Grünbaumian]
o3x3x3/2o3/2x3*b *c3/2*e - [Grünbaumian]
o3o3x3/2x3/2x3*b *c3/2*e - [Grünbaumian]
x3x3x3/2x3/2o3*b *c3/2*e - [Grünbaumian]
x3x3x3/2o3/2x3*b *c3/2*e - [Grünbaumian]
x3o3x3/2x3/2x3*b *c3/2*e - [Grünbaumian]
o3x3x3/2x3/2x3*b *c3/2*e - [Grünbaumian]
x3x3x3/2x3/2x3*b *c3/2*e - [Grünbaumian]
|
x3/2o3o3/2o3/2o3*b *c3/2*e - (contains "2pen")
o3/2x3o3/2o3/2o3*b *c3/2*e - (contains "2tet")
o3/2o3x3/2o3/2o3*b *c3/2*e - (contains "2tet")
o3/2o3o3/2x3/2o3*b *c3/2*e - (contains "2tet")
x3/2x3o3/2o3/2o3*b *c3/2*e - [Grünbaumian]
x3/2o3x3/2o3/2o3*b *c3/2*e - (contains "2tet")
x3/2o3o3/2x3/2o3*b *c3/2*e - (contains "2tet")
o3/2x3x3/2o3/2o3*b *c3/2*e - (contains "2tet")
o3/2x3o3/2x3/2o3*b *c3/2*e - (contains "2tet")
o3/2o3x3/2x3/2o3*b *c3/2*e - [Grünbaumian]
o3/2o3x3/2o3/2x3*b *c3/2*e - [Grünbaumian]
x3/2x3x3/2o3/2o3*b *c3/2*e - [Grünbaumian]
x3/2x3o3/2x3/2o3*b *c3/2*e - [Grünbaumian]
x3/2o3x3/2x3/2o3*b *c3/2*e - [Grünbaumian]
x3/2o3x3/2o3/2x3*b *c3/2*e - [Grünbaumian]
o3/2x3x3/2x3/2o3*b *c3/2*e - [Grünbaumian]
o3/2x3x3/2o3/2x3*b *c3/2*e - [Grünbaumian]
o3/2o3x3/2x3/2x3*b *c3/2*e - [Grünbaumian]
x3/2x3x3/2x3/2o3*b *c3/2*e - [Grünbaumian]
x3/2x3x3/2o3/2x3*b *c3/2*e - [Grünbaumian]
x3/2o3x3/2x3/2x3*b *c3/2*e - [Grünbaumian]
o3/2x3x3/2x3/2x3*b *c3/2*e - [Grünbaumian]
x3/2x3x3/2x3/2x3*b *c3/2*e - [Grünbaumian]
|
x3o3/2o3o3o3/2*b *c3/2*e - (contains "2pen")
o3x3/2o3o3o3/2*b *c3/2*e - (contains "2tet")
o3o3/2x3o3o3/2*b *c3/2*e - (contains "2tet")
o3o3/2o3x3o3/2*b *c3/2*e - (contains "2tet")
x3x3/2o3o3o3/2*b *c3/2*e - (contains "2tet")
x3o3/2x3o3o3/2*b *c3/2*e - (contains "2tet")
x3o3/2o3x3o3/2*b *c3/2*e - (contains "2tet")
o3x3/2x3o3o3/2*b *c3/2*e - [Grünbaumian]
o3x3/2o3x3o3/2*b *c3/2*e - (contains "2tet")
o3o3/2x3x3o3/2*b *c3/2*e - (contains "2tet")
o3o3/2x3o3x3/2*b *c3/2*e - [Grünbaumian]
x3x3/2x3o3o3/2*b *c3/2*e - [Grünbaumian]
x3x3/2o3x3o3/2*b *c3/2*e - (contains "2tet")
x3o3/2x3x3o3/2*b *c3/2*e - (contains "2tet")
x3o3/2x3o3x3/2*b *c3/2*e - [Grünbaumian]
o3x3/2x3x3o3/2*b *c3/2*e - [Grünbaumian]
o3x3/2x3o3x3/2*b *c3/2*e - [Grünbaumian]
o3o3/2x3x3x3/2*b *c3/2*e - [Grünbaumian]
x3x3/2x3x3o3/2*b *c3/2*e - [Grünbaumian]
x3x3/2x3o3x3/2*b *c3/2*e - [Grünbaumian]
x3o3/2x3x3x3/2*b *c3/2*e - [Grünbaumian]
o3x3/2x3x3x3/2*b *c3/2*e - [Grünbaumian]
x3x3/2x3x3x3/2*b *c3/2*e - [Grünbaumian]
|
x3/2o3/2o3o3o3/2*b *c3/2*e - (contains "2pen")
o3/2x3/2o3o3o3/2*b *c3/2*e - (contains "2tet")
o3/2o3/2x3o3o3/2*b *c3/2*e - (contains "2tet")
o3/2o3/2o3x3o3/2*b *c3/2*e - (contains "2tet")
x3/2x3/2o3o3o3/2*b *c3/2*e - [Grünbaumian]
x3/2o3/2x3o3o3/2*b *c3/2*e - (contains "2tet")
x3/2o3/2o3x3o3/2*b *c3/2*e - (contains "2tet")
o3/2x3/2x3o3o3/2*b *c3/2*e - [Grünbaumian]
o3/2x3/2o3x3o3/2*b *c3/2*e - (contains "2tet")
o3/2o3/2x3x3o3/2*b *c3/2*e - (contains "2tet")
o3/2o3/2x3o3x3/2*b *c3/2*e - [Grünbaumian]
x3/2x3/2x3o3o3/2*b *c3/2*e - [Grünbaumian]
x3/2x3/2o3x3o3/2*b *c3/2*e - [Grünbaumian]
x3/2o3/2x3x3o3/2*b *c3/2*e - (contains "2tet")
x3/2o3/2x3o3x3/2*b *c3/2*e - [Grünbaumian]
o3/2x3/2x3x3o3/2*b *c3/2*e - [Grünbaumian]
o3/2x3/2x3o3x3/2*b *c3/2*e - [Grünbaumian]
o3/2o3/2x3x3x3/2*b *c3/2*e - [Grünbaumian]
x3/2x3/2x3x3o3/2*b *c3/2*e - [Grünbaumian]
x3/2x3/2x3o3x3/2*b *c3/2*e - [Grünbaumian]
x3/2o3/2x3x3x3/2*b *c3/2*e - [Grünbaumian]
o3/2x3/2x3x3x3/2*b *c3/2*e - [Grünbaumian]
x3/2x3/2x3x3x3/2*b *c3/2*e - [Grünbaumian]
|
x3o3/2o3/2o3/2o3/2*b *c3/2*e - (contains "2pen")
o3x3/2o3/2o3/2o3/2*b *c3/2*e - (contains "2tet")
o3o3/2x3/2o3/2o3/2*b *c3/2*e - (contains "2tet")
o3o3/2o3/2x3/2o3/2*b *c3/2*e - (contains "2tet")
x3x3/2o3/2o3/2o3/2*b *c3/2*e - (contains "2tet")
x3o3/2x3/2o3/2o3/2*b *c3/2*e - (contains "2tet")
x3o3/2o3/2x3/2o3/2*b *c3/2*e - (contains "2tet")
o3x3/2x3/2o3/2o3/2*b *c3/2*e - [Grünbaumian]
o3x3/2o3/2x3/2o3/2*b *c3/2*e - (contains "2tet")
o3o3/2x3/2x3/2o3/2*b *c3/2*e - [Grünbaumian]
o3o3/2x3/2o3/2x3/2*b *c3/2*e - [Grünbaumian]
x3x3/2x3/2o3/2o3/2*b *c3/2*e - [Grünbaumian]
x3x3/2o3/2x3/2o3/2*b *c3/2*e - (contains "2tet")
x3o3/2x3/2x3/2o3/2*b *c3/2*e - [Grünbaumian]
x3o3/2x3/2o3/2x3/2*b *c3/2*e - [Grünbaumian]
o3x3/2x3/2x3/2o3/2*b *c3/2*e - [Grünbaumian]
o3x3/2x3/2o3/2x3/2*b *c3/2*e - [Grünbaumian]
o3o3/2x3/2x3/2x3/2*b *c3/2*e - [Grünbaumian]
x3x3/2x3/2x3/2o3/2*b *c3/2*e - [Grünbaumian]
x3x3/2x3/2o3/2x3/2*b *c3/2*e - [Grünbaumian]
x3o3/2x3/2x3/2x3/2*b *c3/2*e - [Grünbaumian]
o3x3/2x3/2x3/2x3/2*b *c3/2*e - [Grünbaumian]
x3x3/2x3/2x3/2x3/2*b *c3/2*e - [Grünbaumian]
|
x3/2o3/2o3/2o3/2o3/2*b *c3/2*e - (contains "2pen")
o3/2x3/2o3/2o3/2o3/2*b *c3/2*e - (contains "2tet")
o3/2o3/2x3/2o3/2o3/2*b *c3/2*e - (contains "2tet")
o3/2o3/2o3/2x3/2o3/2*b *c3/2*e - (contains "2tet")
x3/2x3/2o3/2o3/2o3/2*b *c3/2*e - [Grünbaumian]
x3/2o3/2x3/2o3/2o3/2*b *c3/2*e - (contains "2tet")
x3/2o3/2o3/2x3/2o3/2*b *c3/2*e - (contains "2tet")
o3/2x3/2x3/2o3/2o3/2*b *c3/2*e - [Grünbaumian]
o3/2x3/2o3/2x3/2o3/2*b *c3/2*e - (contains "2tet")
o3/2o3/2x3/2x3/2o3/2*b *c3/2*e - [Grünbaumian]
o3/2o3/2x3/2o3/2x3/2*b *c3/2*e - [Grünbaumian]
x3/2x3/2x3/2o3/2o3/2*b *c3/2*e - [Grünbaumian]
x3/2x3/2o3/2x3/2o3/2*b *c3/2*e - [Grünbaumian]
x3/2o3/2x3/2x3/2o3/2*b *c3/2*e - [Grünbaumian]
x3/2o3/2x3/2o3/2x3/2*b *c3/2*e - [Grünbaumian]
o3/2x3/2x3/2x3/2o3/2*b *c3/2*e - [Grünbaumian]
o3/2x3/2x3/2o3/2x3/2*b *c3/2*e - [Grünbaumian]
o3/2o3/2x3/2x3/2x3/2*b *c3/2*e - [Grünbaumian]
x3/2x3/2x3/2x3/2o3/2*b *c3/2*e - [Grünbaumian]
x3/2x3/2x3/2o3/2x3/2*b *c3/2*e - [Grünbaumian]
x3/2o3/2x3/2x3/2x3/2*b *c3/2*e - [Grünbaumian]
o3/2x3/2x3/2x3/2x3/2*b *c3/2*e - [Grünbaumian]
x3/2x3/2x3/2x3/2x3/2*b *c3/2*e - [Grünbaumian]
|
o-P-o-Q-o-R-o-S-o-T-*b-U-*d =
o---Q---o---P---o
\ / \
R U T
\ / \
o---S---o
|
Within spherical symmetry this type of Dynkin diagrams only allows for P,Q,R,S,T,U being 3 or 3/2 only.
Furthermore in each loop only an odd amount of 3/2 marks is allowed.
Demipenteractic Symmetries (up)
x3o3o3o3o3*b3/2*d - (contains "2pen")
o3x3o3o3o3*b3/2*d - (contains "2tet")
o3o3x3o3o3*b3/2*d - (contains "2tet")
o3o3o3x3o3*b3/2*d - (contains "2tet")
x3x3o3o3o3*b3/2*d - (contains "2tet")
x3o3x3o3o3*b3/2*d - (contains "2tet")
x3o3o3x3o3*b3/2*d - (contains "2tet")
o3x3x3o3o3*b3/2*d - (contains "2tet")
o3x3o3x3o3*b3/2*d - [Grünbaumian]
o3o3x3x3o3*b3/2*d - (contains "2tet")
o3o3x3o3x3*b3/2*d - (contains "2tet")
x3x3x3o3o3*b3/2*d - (contains "2tet")
x3x3o3x3o3*b3/2*d - [Grünbaumian]
x3o3x3x3o3*b3/2*d - (contains "2tet")
x3o3x3o3x3*b3/2*d - (contains "2tet")
o3x3x3x3o3*b3/2*d - [Grünbaumian]
o3x3x3o3x3*b3/2*d - ribrant
o3o3x3x3x3*b3/2*d - ript
x3x3x3x3o3*b3/2*d - [Grünbaumian]
x3x3x3o3x3*b3/2*d - roptit
x3o3x3x3x3*b3/2*d - (contains "2thah")
o3x3x3x3x3*b3/2*d - [Grünbaumian]
x3x3x3x3x3*b3/2*d - [Grünbaumian]
|
x3/2o3o3o3o3*b3/2*d - (contains "2pen")
o3/2x3o3o3o3*b3/2*d - (contains "2tet")
o3/2o3x3o3o3*b3/2*d - (contains "2tet")
o3/2o3o3x3o3*b3/2*d - (contains "2tet")
x3/2x3o3o3o3*b3/2*d - [Grünbaumian]
x3/2o3x3o3o3*b3/2*d - (contains "2tet")
x3/2o3o3x3o3*b3/2*d - (contains "2tet")
o3/2x3x3o3o3*b3/2*d - (contains "2tet")
o3/2x3o3x3o3*b3/2*d - [Grünbaumian]
o3/2o3x3x3o3*b3/2*d - (contains "2tet")
o3/2o3x3o3x3*b3/2*d - (contains "2tet")
x3/2x3x3o3o3*b3/2*d - [Grünbaumian]
x3/2x3o3x3o3*b3/2*d - [Grünbaumian]
x3/2o3x3x3o3*b3/2*d - (contains "2tet")
x3/2o3x3o3x3*b3/2*d - (contains "2tet")
o3/2x3x3x3o3*b3/2*d - [Grünbaumian]
o3/2x3x3o3x3*b3/2*d - ribrant
o3/2o3x3x3x3*b3/2*d - ript
x3/2x3x3x3o3*b3/2*d - [Grünbaumian]
x3/2x3x3o3x3*b3/2*d - [Grünbaumian]
x3/2o3x3x3x3*b3/2*d - (contains "2thah")
o3/2x3x3x3x3*b3/2*d - [Grünbaumian]
x3/2x3x3x3x3*b3/2*d - [Grünbaumian]
|
x3o3o3/2o3/2o3*b3*d - (contains "2pen")
o3x3o3/2o3/2o3*b3*d - (contains "2tet")
o3o3x3/2o3/2o3*b3*d - (contains "2tet")
o3o3o3/2x3/2o3*b3*d - (contains "2tet")
x3x3o3/2o3/2o3*b3*d - (contains "2tet")
x3o3x3/2o3/2o3*b3*d - (contains "2tet")
x3o3o3/2x3/2o3*b3*d - (contains "2tet")
o3x3x3/2o3/2o3*b3*d - (contains "2tet")
o3x3o3/2x3/2o3*b3*d - (contains "2thah")
o3o3x3/2x3/2o3*b3*d - [Grünbaumian]
o3o3x3/2o3/2x3*b3*d - (contains "2tet")
x3x3x3/2o3/2o3*b3*d - (contains "2tet")
x3x3o3/2x3/2o3*b3*d - (contains "2thah")
x3o3x3/2x3/2o3*b3*d - [Grünbaumian]
x3o3x3/2o3/2x3*b3*d - (contains "2tet")
o3x3x3/2x3/2o3*b3*d - [Grünbaumian]
o3x3x3/2o3/2x3*b3*d - ribrant
o3o3x3/2x3/2x3*b3*d - [Grünbaumian]
x3x3x3/2x3/2o3*b3*d - [Grünbaumian]
x3x3x3/2o3/2x3*b3*d - roptit
x3o3x3/2x3/2x3*b3*d - [Grünbaumian]
o3x3x3/2x3/2x3*b3*d - [Grünbaumian]
x3x3x3/2x3/2x3*b3*d - [Grünbaumian]
|
x3/2o3o3/2o3/2o3*b3*d - (contains "2pen")
o3/2x3o3/2o3/2o3*b3*d - (contains "2tet")
o3/2o3x3/2o3/2o3*b3*d - (contains "2tet")
o3/2o3o3/2x3/2o3*b3*d - (contains "2tet")
x3/2x3o3/2o3/2o3*b3*d - [Grünbaumian]
x3/2o3x3/2o3/2o3*b3*d - (contains "2tet")
x3/2o3o3/2x3/2o3*b3*d - (contains "2tet")
o3/2x3x3/2o3/2o3*b3*d - (contains "2tet")
o3/2x3o3/2x3/2o3*b3*d - (contains "2thah")
o3/2o3x3/2x3/2o3*b3*d - [Grünbaumian]
o3/2o3x3/2o3/2x3*b3*d - (contains "2tet")
x3/2x3x3/2o3/2o3*b3*d - [Grünbaumian]
x3/2x3o3/2x3/2o3*b3*d - [Grünbaumian]
x3/2o3x3/2x3/2o3*b3*d - [Grünbaumian]
x3/2o3x3/2o3/2x3*b3*d - (contains "2tet")
o3/2x3x3/2x3/2o3*b3*d - [Grünbaumian]
o3/2x3x3/2o3/2x3*b3*d - ribrant
o3/2o3x3/2x3/2x3*b3*d - [Grünbaumian]
x3/2x3x3/2x3/2o3*b3*d - [Grünbaumian]
x3/2x3x3/2o3/2x3*b3*d - [Grünbaumian]
x3/2o3x3/2x3/2x3*b3*d - [Grünbaumian]
o3/2x3x3/2x3/2x3*b3*d - [Grünbaumian]
x3/2x3x3/2x3/2x3*b3*d - [Grünbaumian]
|
x3o3/2o3o3o3/2*b3*d - (contains "2pen")
o3x3/2o3o3o3/2*b3*d - (contains "2tet")
o3o3/2x3o3o3/2*b3*d - (contains "2tet")
o3o3/2o3x3o3/2*b3*d - (contains "2tet")
x3x3/2o3o3o3/2*b3*d - (contains "2tet")
x3o3/2x3o3o3/2*b3*d - (contains "2tet")
x3o3/2o3x3o3/2*b3*d - (contains "2tet")
o3x3/2x3o3o3/2*b3*d - [Grünbaumian]
o3x3/2o3x3o3/2*b3*d - (contains "2thah")
o3o3/2x3x3o3/2*b3*d - (contains "2tet")
o3o3/2x3o3x3/2*b3*d - (contains "2tet")
x3x3/2x3o3o3/2*b3*d - [Grünbaumian]
x3x3/2o3x3o3/2*b3*d - (contains "2thah")
x3o3/2x3x3o3/2*b3*d - (contains "2tet")
x3o3/2x3o3x3/2*b3*d - (contains "2tet")
o3x3/2x3x3o3/2*b3*d - [Grünbaumian]
o3x3/2x3o3x3/2*b3*d - [Grünbaumian]
o3o3/2x3x3x3/2*b3*d - ript
x3x3/2x3x3o3/2*b3*d - [Grünbaumian]
x3x3/2x3o3x3/2*b3*d - [Grünbaumian]
x3o3/2x3x3x3/2*b3*d - (contains "2thah")
o3x3/2x3x3x3/2*b3*d - [Grünbaumian]
x3x3/2x3x3x3/2*b3*d - [Grünbaumian]
|
x3/2o3/2o3o3o3/2*b3*d - (contains "2pen")
o3/2x3/2o3o3o3/2*b3*d - (contains "2tet")
o3/2o3/2x3o3o3/2*b3*d - (contains "2tet")
o3/2o3/2o3x3o3/2*b3*d - (contains "2tet")
x3/2x3/2o3o3o3/2*b3*d - [Grünbaumian]
x3/2o3/2x3o3o3/2*b3*d - (contains "2tet")
x3/2o3/2o3x3o3/2*b3*d - (contains "2tet")
o3/2x3/2x3o3o3/2*b3*d - [Grünbaumian]
o3/2x3/2o3x3o3/2*b3*d - (contains "2thah")
o3/2o3/2x3x3o3/2*b3*d - (contains "2tet")
o3/2o3/2x3o3x3/2*b3*d - (contains "2tet")
x3/2x3/2x3o3o3/2*b3*d - [Grünbaumian]
x3/2x3/2o3x3o3/2*b3*d - [Grünbaumian]
x3/2o3/2x3x3o3/2*b3*d - (contains "2tet")
x3/2o3/2x3o3x3/2*b3*d - (contains "2tet")
o3/2x3/2x3x3o3/2*b3*d - [Grünbaumian]
o3/2x3/2x3o3x3/2*b3*d - [Grünbaumian]
o3/2o3/2x3x3x3/2*b3*d - ript
x3/2x3/2x3x3o3/2*b3*d - [Grünbaumian]
x3/2x3/2x3o3x3/2*b3*d - [Grünbaumian]
x3/2o3/2x3x3x3/2*b3*d - (contains "2thah")
o3/2x3/2x3x3x3/2*b3*d - [Grünbaumian]
x3/2x3/2x3x3x3/2*b3*d - [Grünbaumian]
|
x3o3o3/2o3o3/2*b3*d - (contains "2pen")
o3x3o3/2o3o3/2*b3*d - (contains "2tet")
o3o3x3/2o3o3/2*b3*d - (contains "2tet")
o3o3o3/2x3o3/2*b3*d - (contains "2tet")
o3o3o3/2o3x3/2*b3*d - (contains "2tet")
x3x3o3/2o3o3/2*b3*d - (contains "2tet")
x3o3x3/2o3o3/2*b3*d - (contains "2tet")
x3o3o3/2x3o3/2*b3*d - (contains "2tet")
x3o3o3/2o3x3/2*b3*d - (contains "2tet")
o3x3x3/2o3o3/2*b3*d - (contains "2tet")
o3x3o3/2x3o3/2*b3*d - (contains "2thah")
o3x3o3/2o3x3/2*b3*d - [Grünbaumian]
o3o3x3/2x3o3/2*b3*d - [Grünbaumian]
o3o3x3/2o3x3/2*b3*d - (contains "2tet")
o3o3o3/2x3x3/2*b3*d - (contains "2tet")
x3x3x3/2o3o3/2*b3*d - (contains "2tet")
x3x3o3/2x3o3/2*b3*d - (contains "2thah")
x3x3o3/2o3x3/2*b3*d - [Grünbaumian]
x3o3x3/2x3o3/2*b3*d - [Grünbaumian]
x3o3x3/2o3x3/2*b3*d - (contains "2tet")
x3o3o3/2x3x3/2*b3*d - (contains "2tet")
o3x3x3/2x3o3/2*b3*d - [Grünbaumian]
o3x3x3/2o3x3/2*b3*d - [Grünbaumian]
o3x3o3/2x3x3/2*b3*d - [Grünbaumian]
o3o3x3/2x3x3/2*b3*d - [Grünbaumian]
x3x3x3/2x3o3/2*b3*d - [Grünbaumian]
x3x3x3/2o3x3/2*b3*d - [Grünbaumian]
x3x3o3/2x3x3/2*b3*d - [Grünbaumian]
x3o3x3/2x3x3/2*b3*d - [Grünbaumian]
o3x3x3/2x3x3/2*b3*d - [Grünbaumian]
x3x3x3/2x3x3/2*b3*d - [Grünbaumian]
|
x3/2o3o3/2o3o3/2*b3*d - (contains "2pen")
o3/2x3o3/2o3o3/2*b3*d - (contains "2tet")
o3/2o3x3/2o3o3/2*b3*d - (contains "2tet")
o3/2o3o3/2x3o3/2*b3*d - (contains "2tet")
o3/2o3o3/2o3x3/2*b3*d - (contains "2tet")
x3/2x3o3/2o3o3/2*b3*d - [Grünbaumian]
x3/2o3x3/2o3o3/2*b3*d - (contains "2tet")
x3/2o3o3/2x3o3/2*b3*d - (contains "2tet")
x3/2o3o3/2o3x3/2*b3*d - (contains "2tet")
o3/2x3x3/2o3o3/2*b3*d - (contains "2tet")
o3/2x3o3/2x3o3/2*b3*d - (contains "2thah")
o3/2x3o3/2o3x3/2*b3*d - [Grünbaumian]
o3/2o3x3/2x3o3/2*b3*d - [Grünbaumian]
o3/2o3x3/2o3x3/2*b3*d - (contains "2tet")
o3/2o3o3/2x3x3/2*b3*d - (contains "2tet")
x3/2x3x3/2o3o3/2*b3*d - [Grünbaumian]
x3/2x3o3/2x3o3/2*b3*d - [Grünbaumian]
x3/2x3o3/2o3x3/2*b3*d - [Grünbaumian]
x3/2o3x3/2x3o3/2*b3*d - [Grünbaumian]
x3/2o3x3/2o3x3/2*b3*d - (contains "2tet")
x3/2o3o3/2x3x3/2*b3*d - (contains "2tet")
o3/2x3x3/2x3o3/2*b3*d - [Grünbaumian]
o3/2x3x3/2o3x3/2*b3*d - [Grünbaumian]
o3/2x3o3/2x3x3/2*b3*d - [Grünbaumian]
o3/2o3x3/2x3x3/2*b3*d - [Grünbaumian]
x3/2x3x3/2x3o3/2*b3*d - [Grünbaumian]
x3/2x3x3/2o3x3/2*b3*d - [Grünbaumian]
x3/2x3o3/2x3x3/2*b3*d - [Grünbaumian]
x3/2o3x3/2x3x3/2*b3*d - [Grünbaumian]
o3/2x3x3/2x3x3/2*b3*d - [Grünbaumian]
x3/2x3x3/2x3x3/2*b3*d - [Grünbaumian]
|
x3o3o3o3/2o3/2*b3/2*d - (contains "2pen")
o3x3o3o3/2o3/2*b3/2*d - (contains "2tet")
o3o3x3o3/2o3/2*b3/2*d - (contains "2tet")
o3o3o3x3/2o3/2*b3/2*d - (contains "2tet")
o3o3o3o3/2x3/2*b3/2*d - (contains "2tet")
x3x3o3o3/2o3/2*b3/2*d - (contains "2tet")
x3o3x3o3/2o3/2*b3/2*d - (contains "2tet")
x3o3o3x3/2o3/2*b3/2*d - (contains "2tet")
x3o3o3o3/2x3/2*b3/2*d - (contains "2tet")
o3x3x3o3/2o3/2*b3/2*d - (contains "2tet")
o3x3o3x3/2o3/2*b3/2*d - [Grünbaumian]
o3x3o3o3/2x3/2*b3/2*d - [Grünbaumian]
o3o3x3x3/2o3/2*b3/2*d - (contains "2tet")
o3o3x3o3/2x3/2*b3/2*d - (contains "2tet")
o3o3o3x3/2x3/2*b3/2*d - [Grünbaumian]
x3x3x3o3/2o3/2*b3/2*d - (contains "2tet")
x3x3o3x3/2o3/2*b3/2*d - [Grünbaumian]
x3x3o3o3/2x3/2*b3/2*d - [Grünbaumian]
x3o3x3x3/2o3/2*b3/2*d - (contains "2tet")
x3o3x3o3/2x3/2*b3/2*d - (contains "2tet")
x3o3o3x3/2x3/2*b3/2*d - [Grünbaumian]
o3x3x3x3/2o3/2*b3/2*d - [Grünbaumian]
o3x3x3o3/2x3/2*b3/2*d - [Grünbaumian]
o3x3o3x3/2x3/2*b3/2*d - [Grünbaumian]
o3o3x3x3/2x3/2*b3/2*d - [Grünbaumian]
x3x3x3x3/2o3/2*b3/2*d - [Grünbaumian]
x3x3x3o3/2x3/2*b3/2*d - [Grünbaumian]
x3x3o3x3/2x3/2*b3/2*d - [Grünbaumian]
x3o3x3x3/2x3/2*b3/2*d - [Grünbaumian]
o3x3x3x3/2x3/2*b3/2*d - [Grünbaumian]
x3x3x3x3/2x3/2*b3/2*d - [Grünbaumian]
|
x3/2o3o3o3/2o3/2*b3/2*d - (contains "2pen")
o3/2x3o3o3/2o3/2*b3/2*d - (contains "2tet")
o3/2o3x3o3/2o3/2*b3/2*d - (contains "2tet")
o3/2o3o3x3/2o3/2*b3/2*d - (contains "2tet")
o3/2o3o3o3/2x3/2*b3/2*d - (contains "2tet")
x3/2x3o3o3/2o3/2*b3/2*d - [Grünbaumian]
x3/2o3x3o3/2o3/2*b3/2*d - (contains "2tet")
x3/2o3o3x3/2o3/2*b3/2*d - (contains "2tet")
x3/2o3o3o3/2x3/2*b3/2*d - (contains "2tet")
o3/2x3x3o3/2o3/2*b3/2*d - (contains "2tet")
o3/2x3o3x3/2o3/2*b3/2*d - [Grünbaumian]
o3/2x3o3o3/2x3/2*b3/2*d - [Grünbaumian]
o3/2o3x3x3/2o3/2*b3/2*d - (contains "2tet")
o3/2o3x3o3/2x3/2*b3/2*d - (contains "2tet")
o3/2o3o3x3/2x3/2*b3/2*d - [Grünbaumian]
x3/2x3x3o3/2o3/2*b3/2*d - [Grünbaumian]
x3/2x3o3x3/2o3/2*b3/2*d - [Grünbaumian]
x3/2x3o3o3/2x3/2*b3/2*d - [Grünbaumian]
x3/2o3x3x3/2o3/2*b3/2*d - (contains "2tet")
x3/2o3x3o3/2x3/2*b3/2*d - (contains "2tet")
x3/2o3o3x3/2x3/2*b3/2*d - [Grünbaumian]
o3/2x3x3x3/2o3/2*b3/2*d - [Grünbaumian]
o3/2x3x3o3/2x3/2*b3/2*d - [Grünbaumian]
o3/2x3o3x3/2x3/2*b3/2*d - [Grünbaumian]
o3/2o3x3x3/2x3/2*b3/2*d - [Grünbaumian]
x3/2x3x3x3/2o3/2*b3/2*d - [Grünbaumian]
x3/2x3x3o3/2x3/2*b3/2*d - [Grünbaumian]
x3/2x3o3x3/2x3/2*b3/2*d - [Grünbaumian]
x3/2o3x3x3/2x3/2*b3/2*d - [Grünbaumian]
o3/2x3x3x3/2x3/2*b3/2*d - [Grünbaumian]
x3/2x3x3x3/2x3/2*b3/2*d - [Grünbaumian]
|
x3o3/2o3/2o3/2o3/2*b3/2*d - (contains "2pen")
o3x3/2o3/2o3/2o3/2*b3/2*d - (contains "2tet")
o3o3/2x3/2o3/2o3/2*b3/2*d - (contains "2tet")
o3o3/2o3/2x3/2o3/2*b3/2*d - (contains "2tet")
x3x3/2o3/2o3/2o3/2*b3/2*d - (contains "2tet")
x3o3/2x3/2o3/2o3/2*b3/2*d - (contains "2tet")
x3o3/2o3/2x3/2o3/2*b3/2*d - (contains "2tet")
o3x3/2x3/2o3/2o3/2*b3/2*d - [Grünbaumian]
o3x3/2o3/2x3/2o3/2*b3/2*d - [Grünbaumian]
o3o3/2x3/2x3/2o3/2*b3/2*d - [Grünbaumian]
o3o3/2x3/2o3/2x3/2*b3/2*d - (contains "2tet")
x3x3/2x3/2o3/2o3/2*b3/2*d - [Grünbaumian]
x3x3/2o3/2x3/2o3/2*b3/2*d - [Grünbaumian]
x3o3/2x3/2x3/2o3/2*b3/2*d - [Grünbaumian]
x3o3/2x3/2o3/2x3/2*b3/2*d - (contains "2tet")
o3x3/2x3/2x3/2o3/2*b3/2*d - [Grünbaumian]
o3x3/2x3/2o3/2x3/2*b3/2*d - [Grünbaumian]
o3o3/2x3/2x3/2x3/2*b3/2*d - [Grünbaumian]
x3x3/2x3/2x3/2o3/2*b3/2*d - [Grünbaumian]
x3x3/2x3/2o3/2x3/2*b3/2*d - [Grünbaumian]
x3o3/2x3/2x3/2x3/2*b3/2*d - [Grünbaumian]
o3x3/2x3/2x3/2x3/2*b3/2*d - [Grünbaumian]
x3x3/2x3/2x3/2x3/2*b3/2*d - [Grünbaumian]
|
x3/2o3/2o3/2o3/2o3/2*b3/2*d - (contains "2pen")
o3/2x3/2o3/2o3/2o3/2*b3/2*d - (contains "2tet")
o3/2o3/2x3/2o3/2o3/2*b3/2*d - (contains "2tet")
o3/2o3/2o3/2x3/2o3/2*b3/2*d - (contains "2tet")
x3/2x3/2o3/2o3/2o3/2*b3/2*d - [Grünbaumian]
x3/2o3/2x3/2o3/2o3/2*b3/2*d - (contains "2tet")
x3/2o3/2o3/2x3/2o3/2*b3/2*d - (contains "2tet")
o3/2x3/2x3/2o3/2o3/2*b3/2*d - [Grünbaumian]
o3/2x3/2o3/2x3/2o3/2*b3/2*d - [Grünbaumian]
o3/2o3/2x3/2x3/2o3/2*b3/2*d - [Grünbaumian]
o3/2o3/2x3/2o3/2x3/2*b3/2*d - (contains "2tet")
x3/2x3/2x3/2o3/2o3/2*b3/2*d - [Grünbaumian]
x3/2x3/2o3/2x3/2o3/2*b3/2*d - [Grünbaumian]
x3/2o3/2x3/2x3/2o3/2*b3/2*d - [Grünbaumian]
x3/2o3/2x3/2o3/2x3/2*b3/2*d - (contains "2tet")
o3/2x3/2x3/2x3/2o3/2*b3/2*d - [Grünbaumian]
o3/2x3/2x3/2o3/2x3/2*b3/2*d - [Grünbaumian]
o3/2o3/2x3/2x3/2x3/2*b3/2*d - [Grünbaumian]
x3/2x3/2x3/2x3/2o3/2*b3/2*d - [Grünbaumian]
x3/2x3/2x3/2o3/2x3/2*b3/2*d - [Grünbaumian]
x3/2o3/2x3/2x3/2x3/2*b3/2*d - [Grünbaumian]
o3/2x3/2x3/2x3/2x3/2*b3/2*d - [Grünbaumian]
x3/2x3/2x3/2x3/2x3/2*b3/2*d - [Grünbaumian]
|
o-P-o-Q-o-R-*a-S-o-T-o-U-*a =
o_ _o
| -P_ _U- |
Q | >o< | T
| _R- -S_ |
o- -o
|
Within spherical space this type of Dynkin diagrams allows in demipenteractic symmetry for P,Q,R,S,T,U all being either 3 or 3/2 only,
where each loop, when considered alone, allows for an odd amount of 3/2 only.
In (full) penteractic symmetry at most one loop is of type o3o4o4/3*a (or conjugates thereof), however the link mark 3 (or 3/2) needs to adjoin the central node of the bowtie.
Hexateric Symmetries (up)
x3o3o3/2*a3o3o3/2*a - (contains "2tet")
o3x3o3/2*a3o3o3/2*a - (contains "2tet")
o3o3x3/2*a3o3o3/2*a - (contains "2tet")
x3x3o3/2*a3o3o3/2*a - (contains "2tet")
x3o3x3/2*a3o3o3/2*a - [Grünbaumian]
o3x3x3/2*a3o3o3/2*a - (contains "2pen")
o3x3o3/2*a3x3o3/2*a - (contains "2tet")
o3x3o3/2*a3o3x3/2*a - (contains "2tet")
o3o3x3/2*a3o3x3/2*a - (contains "2tet")
x3x3x3/2*a3o3o3/2*a - [Grünbaumian]
x3x3o3/2*a3x3o3/2*a - recard
x3x3o3/2*a3o3x3/2*a - [Grünbaumian]
x3o3x3/2*a3o3x3/2*a - [Grünbaumian]
o3x3x3/2*a3x3o3/2*a - (contains "2tet")
o3x3x3/2*a3o3x3/2*a - (contains "2tet")
x3x3x3/2*a3x3o3/2*a - [Grünbaumian]
x3x3x3/2*a3o3x3/2*a - [Grünbaumian]
o3x3x3/2*a3x3x3/2*a -
x3x3x3/2*a3x3x3/2*a - [Grünbaumian]
|
x3o3o3/2*a3o3/2o3*a - (contains "2tet")
o3x3o3/2*a3o3/2o3*a - (contains "2tet")
o3o3x3/2*a3o3/2o3*a - (contains "2tet")
o3o3o3/2*a3x3/2o3*a - (contains "2tet")
x3x3o3/2*a3o3/2o3*a - (contains "2tet")
x3o3x3/2*a3o3/2o3*a - [Grünbaumian]
x3o3o3/2*a3x3/2o3*a - (contains "2tet")
o3x3x3/2*a3o3/2o3*a - (contains "2pen")
o3x3o3/2*a3x3/2o3*a - (contains "2tet")
o3o3x3/2*a3x3/2o3*a - (contains "2tet")
o3o3o3/2*a3x3/2x3*a - [Grünbaumian]
x3x3x3/2*a3o3/2o3*a - [Grünbaumian]
x3x3o3/2*a3x3/2o3*a - recard
x3o3x3/2*a3x3/2o3*a - [Grünbaumian]
x3o3o3/2*a3x3/2x3*a - [Grünbaumian]
o3x3x3/2*a3x3/2o3*a - (contains "2tet")
o3x3o3/2*a3x3/2x3*a - [Grünbaumian]
o3o3x3/2*a3x3/2x3*a - [Grünbaumian]
x3x3x3/2*a3x3/2o3*a - [Grünbaumian]
x3x3o3/2*a3x3/2x3*a - [Grünbaumian]
x3o3x3/2*a3x3/2x3*a - [Grünbaumian]
o3x3x3/2*a3x3/2x3*a - [Grünbaumian]
x3x3x3/2*a3x3/2x3*a - [Grünbaumian]
|
x3o3/2o3*a3o3/2o3*a - (contains "2tet")
o3x3/2o3*a3o3/2o3*a - (contains "2tet")
x3x3/2o3*a3o3/2o3*a - (contains "2tet")
o3x3/2x3*a3o3/2o3*a - [Grünbaumian]
o3x3/2o3*a3x3/2o3*a - (contains "2tet")
x3x3/2x3*a3o3/2o3*a - [Grünbaumian]
x3x3/2o3*a3x3/2o3*a - recard
o3x3/2x3*a3x3/2o3*a - [Grünbaumian]
x3x3/2x3*a3x3/2o3*a - [Grünbaumian]
o3x3/2x3*a3x3/2x3*a - [Grünbaumian]
x3x3/2x3*a3x3/2x3*a - [Grünbaumian]
|
x3/2o3/2o3/2*a3o3o3/2*a - (contains "2tet")
o3/2x3/2o3/2*a3o3o3/2*a - (contains "2tet")
o3/2o3/2o3/2*a3x3o3/2*a - (contains "2tet")
o3/2o3/2o3/2*a3o3x3/2*a - (contains "2tet")
x3/2x3/2o3/2*a3o3o3/2*a - [Grünbaumian]
x3/2o3/2o3/2*a3x3o3/2*a - (contains "2tet")
x3/2o3/2o3/2*a3o3x3/2*a - [Grünbaumian]
o3/2x3/2x3/2*a3o3o3/2*a - [Grünbaumian]
o3/2x3/2o3/2*a3x3o3/2*a - (contains "2tet")
o3/2x3/2o3/2*a3o3x3/2*a - (contains "2tet")
o3/2o3/2o3/2*a3x3x3/2*a -
x3/2x3/2x3/2*a3o3o3/2*a - [Grünbaumian]
x3/2x3/2o3/2*a3x3o3/2*a - [Grünbaumian]
x3/2x3/2o3/2*a3o3x3/2*a - [Grünbaumian]
x3/2o3/2o3/2*a3x3x3/2*a - [Grünbaumian]
o3/2x3/2x3/2*a3x3o3/2*a - [Grünbaumian]
o3/2x3/2x3/2*a3o3x3/2*a - [Grünbaumian]
o3/2x3/2o3/2*a3x3x3/2*a - (contains "2tet")
x3/2x3/2x3/2*a3x3o3/2*a - [Grünbaumian]
x3/2x3/2x3/2*a3o3x3/2*a - [Grünbaumian]
x3/2x3/2o3/2*a3x3x3/2*a - [Grünbaumian]
o3/2x3/2x3/2*a3x3x3/2*a - [Grünbaumian]
x3/2x3/2x3/2*a3x3x3/2*a - [Grünbaumian]
|
x3/2o3/2o3/2*a3o3/2o3*a - (contains "2tet")
o3/2x3/2o3/2*a3o3/2o3*a - (contains "2tet")
o3/2o3/2o3/2*a3x3/2o3*a - (contains "2tet")
x3/2x3/2o3/2*a3o3/2o3*a - [Grünbaumian]
x3/2o3/2o3/2*a3x3/2o3*a - (contains "2tet")
o3/2x3/2x3/2*a3o3/2o3*a - [Grünbaumian]
o3/2x3/2o3/2*a3x3/2o3*a - (contains "2tet")
o3/2o3/2o3/2*a3x3/2x3*a - [Grünbaumian]
x3/2x3/2x3/2*a3o3/2o3*a - [Grünbaumian]
x3/2x3/2o3/2*a3x3/2o3*a - [Grünbaumian]
x3/2o3/2o3/2*a3x3/2x3*a - [Grünbaumian]
o3/2x3/2x3/2*a3x3/2o3*a - [Grünbaumian]
o3/2x3/2o3/2*a3x3/2x3*a - [Grünbaumian]
x3/2x3/2x3/2*a3x3/2o3*a - [Grünbaumian]
x3/2x3/2o3/2*a3x3/2x3*a - [Grünbaumian]
o3/2x3/2x3/2*a3x3/2x3*a - [Grünbaumian]
x3/2x3/2x3/2*a3x3/2x3*a - [Grünbaumian]
|
x3/2o3/2o3/2*a3/2o3/2o3/2*a - (contains "2tet")
o3/2x3/2o3/2*a3/2o3/2o3/2*a - (contains "2tet")
x3/2x3/2o3/2*a3/2o3/2o3/2*a - [Grünbaumian]
o3/2x3/2x3/2*a3/2o3/2o3/2*a - [Grünbaumian]
o3/2x3/2o3/2*a3/2x3/2o3/2*a - (contains "2tet")
x3/2x3/2x3/2*a3/2o3/2o3/2*a - [Grünbaumian]
x3/2x3/2o3/2*a3/2x3/2o3/2*a - [Grünbaumian]
o3/2x3/2x3/2*a3/2x3/2o3/2*a - [Grünbaumian]
x3/2x3/2x3/2*a3/2x3/2o3/2*a - [Grünbaumian]
o3/2x3/2x3/2*a3/2x3/2x3/2*a - [Grünbaumian]
x3/2x3/2x3/2*a3/2x3/2x3/2*a - [Grünbaumian]
|
Penteractic Symmetries (up)
x3o3o3/2*a3o4o4/3*a - (contains "2tet")
o3x3o3/2*a3o4o4/3*a - (contains "2tet")
o3o3x3/2*a3o4o4/3*a - (contains "2tet")
o3o3o3/2*a3x4o4/3*a - (contains "2pen")
o3o3o3/2*a3o4x4/3*a - (contains "2tes")
x3x3o3/2*a3o4o4/3*a - (contains "oct+6{4}")
x3o3x3/2*a3o4o4/3*a - [Grünbaumian]
x3o3o3/2*a3x4o4/3*a - (contains "2tet")
x3o3o3/2*a3o4x4/3*a - (contains "2tet")
o3x3x3/2*a3o4o4/3*a - (contains "hex+8oct")
o3x3o3/2*a3x4o4/3*a - (contains "2tet")
o3x3o3/2*a3o4x4/3*a - (contains "2tet")
o3o3x3/2*a3x4o4/3*a - (contains "2tet")
o3o3x3/2*a3o4x4/3*a - (contains "2tet")
o3o3o3/2*a3x4x4/3*a - (contains "2pen")
x3x3x3/2*a3o4o4/3*a - [Grünbaumian]
x3x3o3/2*a3x4o4/3*a - (contains "2cho")
x3x3o3/2*a3o4x4/3*a - garcornit
x3o3x3/2*a3x4o4/3*a - [Grünbaumian]
x3o3x3/2*a3o4x4/3*a - [Grünbaumian]
x3o3o3/2*a3x4x4/3*a - (contains "2tet")
o3x3x3/2*a3x4o4/3*a - (contains "oct+6{4}")
o3x3x3/2*a3o4x4/3*a - (contains "2cube")
o3x3o3/2*a3x4x4/3*a - (contains "2tet")
o3o3x3/2*a3x4x4/3*a - (contains "2tet")
x3x3x3/2*a3x4o4/3*a - [Grünbaumian]
x3x3x3/2*a3o4x4/3*a - [Grünbaumian]
x3x3o3/2*a3x4x4/3*a - noqraptant
x3o3x3/2*a3x4x4/3*a - [Grünbaumian]
o3x3x3/2*a3x4x4/3*a - (contains "2thah")
x3x3x3/2*a3x4x4/3*a - [Grünbaumian]
|
x3o3o3/2*a3o4/3o4*a - (contains "2tet")
o3x3o3/2*a3o4/3o4*a - (contains "2tet")
o3o3x3/2*a3o4/3o4*a - (contains "2tet")
o3o3o3/2*a3x4/3o4*a - (contains "2pen")
o3o3o3/2*a3o4/3x4*a - (contains "2tes")
x3x3o3/2*a3o4/3o4*a - (contains "oct+6{4}")
x3o3x3/2*a3o4/3o4*a - [Grünbaumian]
x3o3o3/2*a3x4/3o4*a - (contains "2tet")
x3o3o3/2*a3o4/3x4*a - (contains "2tet")
o3x3x3/2*a3o4/3o4*a - (contains "hex+8oct")
o3x3o3/2*a3x4/3o4*a - (contains "2tet")
o3x3o3/2*a3o4/3x4*a - (contains "2tet")
o3o3x3/2*a3x4/3o4*a - (contains "2tet")
o3o3x3/2*a3o4/3x4*a - (contains "2tet")
o3o3o3/2*a3x4/3x4*a - (contains "2pen")
x3x3x3/2*a3o4/3o4*a - [Grünbaumian]
x3x3o3/2*a3x4/3o4*a - (contains "2cho")
x3x3o3/2*a3o4/3x4*a - recarnit
x3o3x3/2*a3x4/3o4*a - [Grünbaumian]
x3o3x3/2*a3o4/3x4*a - [Grünbaumian]
x3o3o3/2*a3x4/3x4*a - (contains "2tet")
o3x3x3/2*a3x4/3o4*a - (contains "oct+6{4}")
o3x3x3/2*a3o4/3x4*a - (contains "2cube")
o3x3o3/2*a3x4/3x4*a - (contains "2tet")
o3o3x3/2*a3x4/3x4*a - (contains "2tet")
x3x3x3/2*a3x4/3o4*a - [Grünbaumian]
x3x3x3/2*a3o4/3x4*a - [Grünbaumian]
x3x3o3/2*a3x4/3x4*a - narptint
x3o3x3/2*a3x4/3x4*a - [Grünbaumian]
o3x3x3/2*a3x4/3x4*a - (contains "2thah")
x3x3x3/2*a3x4/3x4*a - [Grünbaumian]
|
x3o3o3/2*a3/2o4o4*a - (contains "2tet")
o3x3o3/2*a3/2o4o4*a - (contains "2tet")
o3o3x3/2*a3/2o4o4*a - (contains "2tet")
o3o3o3/2*a3/2x4o4*a - (contains "2pen")
o3o3o3/2*a3/2o4x4*a - (contains "2tes")
x3x3o3/2*a3/2o4o4*a - (contains "oct+6{4}")
x3o3x3/2*a3/2o4o4*a - [Grünbaumian]
x3o3o3/2*a3/2x4o4*a - [Grünbaumian]
x3o3o3/2*a3/2o4x4*a - (contains "2tet")
o3x3x3/2*a3/2o4o4*a - (contains "hex+8oct")
o3x3o3/2*a3/2x4o4*a - (contains "2tet")
o3x3o3/2*a3/2o4x4*a - (contains "2tet")
o3o3x3/2*a3/2x4o4*a - (contains "2tet")
o3o3x3/2*a3/2o4x4*a - (contains "2tet")
o3o3o3/2*a3/2x4x4*a - (contains "2pen")
x3x3x3/2*a3/2o4o4*a - [Grünbaumian]
x3x3o3/2*a3/2x4o4*a - [Grünbaumian]
x3x3o3/2*a3/2o4x4*a - recarnit
x3o3x3/2*a3/2x4o4*a - [Grünbaumian]
x3o3x3/2*a3/2o4x4*a - [Grünbaumian]
x3o3o3/2*a3/2x4x4*a - [Grünbaumian]
o3x3x3/2*a3/2x4o4*a - (contains "oct+6{4}")
o3x3x3/2*a3/2o4x4*a - (contains "2cube")
o3x3o3/2*a3/2x4x4*a - (contains "2tet")
o3o3x3/2*a3/2x4x4*a - (contains "2tet")
x3x3x3/2*a3/2x4o4*a - [Grünbaumian]
x3x3x3/2*a3/2o4x4*a - [Grünbaumian]
x3x3o3/2*a3/2x4x4*a - [Grünbaumian]
x3o3x3/2*a3/2x4x4*a - [Grünbaumian]
o3x3x3/2*a3/2x4x4*a - (contains "2thah")
x3x3x3/2*a3/2x4x4*a - [Grünbaumian]
|
x3o3o3/2*a3/2o4/3o4/3*a - (contains "2tet")
o3x3o3/2*a3/2o4/3o4/3*a - (contains "2tet")
o3o3x3/2*a3/2o4/3o4/3*a - (contains "2tet")
o3o3o3/2*a3/2x4/3o4/3*a - (contains "2pen")
o3o3o3/2*a3/2o4/3x4/3*a - (contains "2tes")
x3x3o3/2*a3/2o4/3o4/3*a - (contains "oct+6{4}")
x3o3x3/2*a3/2o4/3o4/3*a - [Grünbaumian]
x3o3o3/2*a3/2x4/3o4/3*a - [Grünbaumian]
x3o3o3/2*a3/2o4/3x4/3*a - (contains "2tet")
o3x3x3/2*a3/2o4/3o4/3*a - (contains "hex+8oct")
o3x3o3/2*a3/2x4/3o4/3*a - (contains "2tet")
o3x3o3/2*a3/2o4/3x4/3*a - (contains "2tet")
o3o3x3/2*a3/2x4/3o4/3*a - (contains "2tet")
o3o3x3/2*a3/2o4/3x4/3*a - (contains "2tet")
o3o3o3/2*a3/2x4/3x4/3*a - (contains "2pen")
x3x3x3/2*a3/2o4/3o4/3*a - [Grünbaumian]
x3x3o3/2*a3/2x4/3o4/3*a - [Grünbaumian]
x3x3o3/2*a3/2o4/3x4/3*a - garcornit
x3o3x3/2*a3/2x4/3o4/3*a - [Grünbaumian]
x3o3x3/2*a3/2o4/3x4/3*a - [Grünbaumian]
x3o3o3/2*a3/2x4/3x4/3*a - [Grünbaumian]
o3x3x3/2*a3/2x4/3o4/3*a - (contains "oct+6{4}")
o3x3x3/2*a3/2o4/3x4/3*a - (contains "2cube")
o3x3o3/2*a3/2x4/3x4/3*a - (contains "2tet")
o3o3x3/2*a3/2x4/3x4/3*a - (contains "2tet")
x3x3x3/2*a3/2x4/3o4/3*a - [Grünbaumian]
x3x3x3/2*a3/2o4/3x4/3*a - [Grünbaumian]
x3x3o3/2*a3/2x4/3x4/3*a - [Grünbaumian]
x3o3x3/2*a3/2x4/3x4/3*a - [Grünbaumian]
o3x3x3/2*a3/2x4/3x4/3*a - (contains "2thah")
x3x3x3/2*a3/2x4/3x4/3*a - [Grünbaumian]
|
x3o3/2o3*a3o4o4/3*a - (contains "2tet")
o3x3/2o3*a3o4o4/3*a - (contains "2tet")
o3o3/2o3*a3x4o4/3*a - (contains "2pen")
o3o3/2o3*a3o4x4/3*a - (contains "2tes")
x3x3/2o3*a3o4o4/3*a - (contains "oct+6{4}")
x3o3/2o3*a3x4o4/3*a - (contains "2tet")
x3o3/2o3*a3o4x4/3*a - (contains "2tet")
o3x3/2x3*a3o4o4/3*a - [Grünbaumian]
o3x3/2o3*a3x4o4/3*a - (contains "2tet")
o3x3/2o3*a3o4x4/3*a - (contains "2tet")
o3o3/2o3*a3x4x4/3*a - (contains "2pen")
x3x3/2x3*a3o4o4/3*a - [Grünbaumian]
x3x3/2o3*a3x4o4/3*a - (contains "2cho")
x3x3/2o3*a3o4x4/3*a - garcornit
x3o3/2o3*a3x4x4/3*a - (contains "2tet")
o3x3/2x3*a3x4o4/3*a - [Grünbaumian]
o3x3/2x3*a3o4x4/3*a - [Grünbaumian]
o3x3/2o3*a3x4x4/3*a - (contains "2tet")
x3x3/2x3*a3x4o4/3*a - [Grünbaumian]
x3x3/2x3*a3o4x4/3*a - [Grünbaumian]
x3x3/2o3*a3x4x4/3*a - noqraptant
o3x3/2x3*a3x4x4/3*a - [Grünbaumian]
x3x3/2x3*a3x4x4/3*a - [Grünbaumian]
|
x3o3/2o3*a3o4/3o4*a - (contains "2tet")
o3x3/2o3*a3o4/3o4*a - (contains "2tet")
o3o3/2o3*a3x4/3o4*a - (contains "2pen")
o3o3/2o3*a3o4/3x4*a - (contains "2tes")
x3x3/2o3*a3o4/3o4*a - (contains "oct+6{4}")
x3o3/2o3*a3x4/3o4*a - (contains "2tet")
x3o3/2o3*a3o4/3x4*a - (contains "2tet")
o3x3/2x3*a3o4/3o4*a - [Grünbaumian]
o3x3/2o3*a3x4/3o4*a - (contains "2tet")
o3x3/2o3*a3o4/3x4*a - (contains "2tet")
o3o3/2o3*a3x4/3x4*a - (contains "2pen")
x3x3/2x3*a3o4/3o4*a - [Grünbaumian]
x3x3/2o3*a3x4/3o4*a - (contains "2cho")
x3x3/2o3*a3o4/3x4*a - recarnit
x3o3/2o3*a3x4/3x4*a - (contains "2tet")
o3x3/2x3*a3x4/3o4*a - [Grünbaumian]
o3x3/2x3*a3o4/3x4*a - [Grünbaumian]
o3x3/2o3*a3x4/3x4*a - (contains "2tet")
x3x3/2x3*a3x4/3o4*a - [Grünbaumian]
x3x3/2x3*a3o4/3x4*a - [Grünbaumian]
x3x3/2o3*a3x4/3x4*a - narptint
o3x3/2x3*a3x4/3x4*a - [Grünbaumian]
x3x3/2x3*a3x4/3x4*a - [Grünbaumian]
|
x3o3/2o3*a3/2o4o4*a - (contains "2tet")
o3x3/2o3*a3/2o4o4*a - (contains "2tet")
o3o3/2o3*a3/2x4o4*a - (contains "2pen")
o3o3/2o3*a3/2o4x4*a - (contains "2tes")
x3x3/2o3*a3/2o4o4*a - (contains "oct+6{4}")
x3o3/2o3*a3/2x4o4*a - [Grünbaumian]
x3o3/2o3*a3/2o4x4*a - (contains "2tet")
o3x3/2x3*a3/2o4o4*a - [Grünbaumian]
o3x3/2o3*a3/2x4o4*a - (contains "2tet")
o3x3/2o3*a3/2o4x4*a - (contains "2tet")
o3o3/2o3*a3/2x4x4*a - (contains "2pen")
x3x3/2x3*a3/2o4o4*a - [Grünbaumian]
x3x3/2o3*a3/2x4o4*a - [Grünbaumian]
x3x3/2o3*a3/2o4x4*a - recarnit
x3o3/2o3*a3/2x4x4*a - [Grünbaumian]
o3x3/2x3*a3/2x4o4*a - [Grünbaumian]
o3x3/2x3*a3/2o4x4*a - [Grünbaumian]
o3x3/2o3*a3/2x4x4*a - (contains "2tet")
x3x3/2x3*a3/2x4o4*a - [Grünbaumian]
x3x3/2x3*a3/2o4x4*a - [Grünbaumian]
x3x3/2o3*a3/2x4x4*a - [Grünbaumian]
o3x3/2x3*a3/2x4x4*a - [Grünbaumian]
x3x3/2x3*a3/2x4x4*a - [Grünbaumian]
|
x3o3/2o3*a3/2o4/3o4/3*a - (contains "2tet")
o3x3/2o3*a3/2o4/3o4/3*a - (contains "2tet")
o3o3/2o3*a3/2x4/3o4/3*a - (contains "2pen")
o3o3/2o3*a3/2o4/3x4/3*a - (contains "2tes")
x3x3/2o3*a3/2o4/3o4/3*a - (contains "oct+6{4}")
x3o3/2o3*a3/2x4/3o4/3*a - [Grünbaumian]
x3o3/2o3*a3/2o4/3x4/3*a - (contains "2tet")
o3x3/2x3*a3/2o4/3o4/3*a - [Grünbaumian]
o3x3/2o3*a3/2x4/3o4/3*a - (contains "2tet")
o3x3/2o3*a3/2o4/3x4/3*a - (contains "2tet")
o3o3/2o3*a3/2x4/3x4/3*a - (contains "2pen")
x3x3/2x3*a3/2o4/3o4/3*a - [Grünbaumian]
x3x3/2o3*a3/2x4/3o4/3*a - [Grünbaumian]
x3x3/2o3*a3/2o4/3x4/3*a - garcornit
x3o3/2o3*a3/2x4/3x4/3*a - [Grünbaumian]
o3x3/2x3*a3/2x4/3o4/3*a - [Grünbaumian]
o3x3/2x3*a3/2o4/3x4/3*a - [Grünbaumian]
o3x3/2o3*a3/2x4/3x4/3*a - (contains "2tet")
x3x3/2x3*a3/2x4/3o4/3*a - [Grünbaumian]
x3x3/2x3*a3/2o4/3x4/3*a - [Grünbaumian]
x3x3/2o3*a3/2x4/3x4/3*a - [Grünbaumian]
o3x3/2x3*a3/2x4/3x4/3*a - [Grünbaumian]
x3x3/2x3*a3/2x4/3x4/3*a - [Grünbaumian]
|
x3/2o3/2o3/2*a3o4o4/3*a - (contains "2tet")
o3/2x3/2o3/2*a3o4o4/3*a - (contains "2tet")
o3/2o3/2o3/2*a3x4o4/3*a - (contains "2pen")
o3/2o3/2o3/2*a3o4x4/3*a - (contains "2tes")
x3/2x3/2o3/2*a3o4o4/3*a - [Grünbaumian]
x3/2o3/2o3/2*a3x4o4/3*a - (contains "2tet")
x3/2o3/2o3/2*a3o4x4/3*a - (contains "2tet")
o3/2x3/2x3/2*a3o4o4/3*a - [Grünbaumian]
o3/2x3/2o3/2*a3x4o4/3*a - (contains "2tet")
o3/2x3/2o3/2*a3o4x4/3*a - (contains "2tet")
o3/2o3/2o3/2*a3x4x4/3*a - (contains "2pen")
x3/2x3/2x3/2*a3o4o4/3*a - [Grünbaumian]
x3/2x3/2o3/2*a3x4o4/3*a - [Grünbaumian]
x3/2x3/2o3/2*a3o4x4/3*a - [Grünbaumian]
x3/2o3/2o3/2*a3x4x4/3*a - (contains "2tet")
o3/2x3/2x3/2*a3x4o4/3*a - [Grünbaumian]
o3/2x3/2x3/2*a3o4x4/3*a - [Grünbaumian]
o3/2x3/2o3/2*a3x4x4/3*a - (contains "2tet")
x3/2x3/2x3/2*a3x4o4/3*a - [Grünbaumian]
x3/2x3/2x3/2*a3o4x4/3*a - [Grünbaumian]
x3/2x3/2o3/2*a3x4x4/3*a - [Grünbaumian]
o3/2x3/2x3/2*a3x4x4/3*a - [Grünbaumian]
x3/2x3/2x3/2*a3x4x4/3*a - [Grünbaumian]
|
x3/2o3/2o3/2*a3o4/3o4*a - (contains "2tet")
o3/2x3/2o3/2*a3o4/3o4*a - (contains "2tet")
o3/2o3/2o3/2*a3x4/3o4*a - (contains "2pen")
o3/2o3/2o3/2*a3o4/3x4*a - (contains "2tes")
x3/2x3/2o3/2*a3o4/3o4*a - [Grünbaumian]
x3/2o3/2o3/2*a3x4/3o4*a - (contains "2tet")
x3/2o3/2o3/2*a3o4/3x4*a - (contains "2tet")
o3/2x3/2x3/2*a3o4/3o4*a - [Grünbaumian]
o3/2x3/2o3/2*a3x4/3o4*a - (contains "2tet")
o3/2x3/2o3/2*a3o4/3x4*a - (contains "2tet")
o3/2o3/2o3/2*a3x4/3x4*a - (contains "2pen")
x3/2x3/2x3/2*a3o4/3o4*a - [Grünbaumian]
x3/2x3/2o3/2*a3x4/3o4*a - [Grünbaumian]
x3/2x3/2o3/2*a3o4/3x4*a - [Grünbaumian]
x3/2o3/2o3/2*a3x4/3x4*a - (contains "2tet")
o3/2x3/2x3/2*a3x4/3o4*a - [Grünbaumian]
o3/2x3/2x3/2*a3o4/3x4*a - [Grünbaumian]
o3/2x3/2o3/2*a3x4/3x4*a - (contains "2tet")
x3/2x3/2x3/2*a3x4/3o4*a - [Grünbaumian]
x3/2x3/2x3/2*a3o4/3x4*a - [Grünbaumian]
x3/2x3/2o3/2*a3x4/3x4*a - [Grünbaumian]
o3/2x3/2x3/2*a3x4/3x4*a - [Grünbaumian]
x3/2x3/2x3/2*a3x4/3x4*a - [Grünbaumian]
|
x3/2o3/2o3/2*a3/2o4o4*a - (contains "2tet")
o3/2x3/2o3/2*a3/2o4o4*a - (contains "2tet")
o3/2o3/2o3/2*a3/2x4o4*a - (contains "2pen")
o3/2o3/2o3/2*a3/2o4x4*a - (contains "2tes")
x3/2x3/2o3/2*a3/2o4o4*a - [Grünbaumian]
x3/2o3/2o3/2*a3/2x4o4*a - [Grünbaumian]
x3/2o3/2o3/2*a3/2o4x4*a - (contains "2tet")
o3/2x3/2x3/2*a3/2o4o4*a - [Grünbaumian]
o3/2x3/2o3/2*a3/2x4o4*a - (contains "2tet")
o3/2x3/2o3/2*a3/2o4x4*a - (contains "2tet")
o3/2o3/2o3/2*a3/2x4x4*a - (contains "2pen")
x3/2x3/2x3/2*a3/2o4o4*a - [Grünbaumian]
x3/2x3/2o3/2*a3/2x4o4*a - [Grünbaumian]
x3/2x3/2o3/2*a3/2o4x4*a - [Grünbaumian]
x3/2o3/2o3/2*a3/2x4x4*a - [Grünbaumian]
o3/2x3/2x3/2*a3/2x4o4*a - [Grünbaumian]
o3/2x3/2x3/2*a3/2o4x4*a - [Grünbaumian]
o3/2x3/2o3/2*a3/2x4x4*a - (contains "2tet")
x3/2x3/2x3/2*a3/2x4o4*a - [Grünbaumian]
x3/2x3/2x3/2*a3/2o4x4*a - [Grünbaumian]
x3/2x3/2o3/2*a3/2x4x4*a - [Grünbaumian]
o3/2x3/2x3/2*a3/2x4x4*a - [Grünbaumian]
x3/2x3/2x3/2*a3/2x4x4*a - [Grünbaumian]
|
x3/2o3/2o3/2*a3/2o4/3o4/3*a - (contains "2tet")
o3/2x3/2o3/2*a3/2o4/3o4/3*a - (contains "2tet")
o3/2o3/2o3/2*a3/2x4/3o4/3*a - (contains "2pen")
o3/2o3/2o3/2*a3/2o4/3x4/3*a - (contains "2tes")
x3/2x3/2o3/2*a3/2o4/3o4/3*a - [Grünbaumian]
x3/2o3/2o3/2*a3/2x4/3o4/3*a - [Grünbaumian]
x3/2o3/2o3/2*a3/2o4/3x4/3*a - (contains "2tet")
o3/2x3/2x3/2*a3/2o4/3o4/3*a - [Grünbaumian]
o3/2x3/2o3/2*a3/2x4/3o4/3*a - (contains "2tet")
o3/2x3/2o3/2*a3/2o4/3x4/3*a - (contains "2tet")
o3/2o3/2o3/2*a3/2x4/3x4/3*a - (contains "2pen")
x3/2x3/2x3/2*a3/2o4/3o4/3*a - [Grünbaumian]
x3/2x3/2o3/2*a3/2x4/3o4/3*a - [Grünbaumian]
x3/2x3/2o3/2*a3/2o4/3x4/3*a - [Grünbaumian]
x3/2o3/2o3/2*a3/2x4/3x4/3*a - [Grünbaumian]
o3/2x3/2x3/2*a3/2x4/3o4/3*a - [Grünbaumian]
o3/2x3/2x3/2*a3/2o4/3x4/3*a - [Grünbaumian]
o3/2x3/2o3/2*a3/2x4/3x4/3*a - (contains "2tet")
x3/2x3/2x3/2*a3/2x4/3o4/3*a - [Grünbaumian]
x3/2x3/2x3/2*a3/2o4/3x4/3*a - [Grünbaumian]
x3/2x3/2o3/2*a3/2x4/3x4/3*a - [Grünbaumian]
o3/2x3/2x3/2*a3/2x4/3x4/3*a - [Grünbaumian]
x3/2x3/2x3/2*a3/2x4/3x4/3*a - [Grünbaumian]
|